Mathematical theorem about Banach spaces
In the mathematical theory of Banach spaces , the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range .
The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires .
Statement
Let
X
{\displaystyle X}
and
Y
{\displaystyle Y}
be Banach spaces,
T
:
D
(
T
)
→ → -->
Y
{\displaystyle T:D(T)\to Y}
a closed linear operator whose domain
D
(
T
)
{\displaystyle D(T)}
is dense in
X
,
{\displaystyle X,}
and
T
′
{\displaystyle T'}
the transpose of
T
{\displaystyle T}
. The theorem asserts that the following conditions are equivalent:
R
(
T
)
,
{\displaystyle R(T),}
the range of
T
,
{\displaystyle T,}
is closed in
Y
.
{\displaystyle Y.}
R
(
T
′
)
,
{\displaystyle R(T'),}
the range of
T
′
,
{\displaystyle T',}
is closed in
X
′
,
{\displaystyle X',}
the dual of
X
.
{\displaystyle X.}
R
(
T
)
=
N
(
T
′
)
⊥ ⊥ -->
=
{
y
∈ ∈ -->
Y
:
⟨ ⟨ -->
x
∗ ∗ -->
,
y
⟩ ⟩ -->
=
0
for all
x
∗ ∗ -->
∈ ∈ -->
N
(
T
′
)
}
.
{\displaystyle R(T)=N(T')^{\perp }=\left\{y\in Y:\langle x^{*},y\rangle =0\quad {\text{for all}}\quad x^{*}\in N(T')\right\}.}
R
(
T
′
)
=
N
(
T
)
⊥ ⊥ -->
=
{
x
∗ ∗ -->
∈ ∈ -->
X
′
:
⟨ ⟨ -->
x
∗ ∗ -->
,
y
⟩ ⟩ -->
=
0
for all
y
∈ ∈ -->
N
(
T
)
}
.
{\displaystyle R(T')=N(T)^{\perp }=\left\{x^{*}\in X':\langle x^{*},y\rangle =0\quad {\text{for all}}\quad y\in N(T)\right\}.}
Where
N
(
T
)
{\displaystyle N(T)}
and
N
(
T
′
)
{\displaystyle N(T')}
are the null space of
T
{\displaystyle T}
and
T
′
{\displaystyle T'}
, respectively.
Note that there is always an inclusion
R
(
T
)
⊆ ⊆ -->
N
(
T
′
)
⊥ ⊥ -->
{\displaystyle R(T)\subseteq N(T')^{\perp }}
, because if
y
=
T
x
{\displaystyle y=Tx}
and
x
∗ ∗ -->
∈ ∈ -->
N
(
T
′
)
{\displaystyle x^{*}\in N(T')}
, then
⟨ ⟨ -->
x
∗ ∗ -->
,
y
⟩ ⟩ -->
=
⟨ ⟨ -->
T
′
x
∗ ∗ -->
,
x
⟩ ⟩ -->
=
0
{\displaystyle \langle x^{*},y\rangle =\langle T'x^{*},x\rangle =0}
. Likewise, there is an inclusion
R
(
T
′
)
⊆ ⊆ -->
N
(
T
)
⊥ ⊥ -->
{\displaystyle R(T')\subseteq N(T)^{\perp }}
. So the non-trivial part of the above theorem is the opposite inclusion in the final two bullets.
Corollaries
Several corollaries are immediate from the theorem. For instance, a densely defined closed operator
T
{\displaystyle T}
as above has
R
(
T
)
=
Y
{\displaystyle R(T)=Y}
if and only if the transpose
T
′
{\displaystyle T'}
has a continuous inverse. Similarly,
R
(
T
′
)
=
X
′
{\displaystyle R(T')=X'}
if and only if
T
{\displaystyle T}
has a continuous inverse.
Sketch of proof
Since the graph of T is closed, the proof reduces to the case when
T
:
X
→ → -->
Y
{\displaystyle T:X\to Y}
is a bounded operator between Banach spaces. Now,
T
{\displaystyle T}
factors as
X
→ → -->
p
X
/
ker
-->
T
→ → -->
T
0
im
-->
T
↪ ↪ -->
i
Y
{\displaystyle X{\overset {p}{\to }}X/\operatorname {ker} T{\overset {T_{0}}{\to }}\operatorname {im} T{\overset {i}{\hookrightarrow }}Y}
. Dually,
T
′
{\displaystyle T'}
is
Y
′
→ → -->
(
im
-->
T
)
′
→ → -->
T
0
′
(
X
/
ker
-->
T
)
′
→ → -->
X
′
.
{\displaystyle Y'\to (\operatorname {im} T)'{\overset {T_{0}'}{\to }}(X/\operatorname {ker} T)'\to X'.}
Now, if
im
-->
T
{\displaystyle \operatorname {im} T}
is closed, then it is Banach and so by the open mapping theorem ,
T
0
{\displaystyle T_{0}}
is a topological isomorphism. It follows that
T
0
′
{\displaystyle T_{0}'}
is an isomorphism and then
im
-->
(
T
′
)
=
ker
-->
(
T
)
⊥ ⊥ -->
{\displaystyle \operatorname {im} (T')=\operatorname {ker} (T)^{\bot }}
. (More work is needed for the other implications.)
◻ ◻ -->
{\displaystyle \square }
References
Banach, Stefan (1932). Théorie des Opérations Linéaires [Theory of Linear Operations ] (PDF) . Monografie Matematyczne (in French). Vol. 1. Warszawa: Subwencji Funduszu Kultury Narodowej. Zbl 0005.20901 . Archived from the original (PDF) on 2014-01-11. Retrieved 2020-07-11 .
Yosida, K. (1980), Functional Analysis , Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 123 (6th ed.), Berlin, New York: Springer-Verlag .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics