Hyperplane separation theorem

Hyperplane separation theorem
Illustration of the hyperplane separation theorem.
TypeTheorem
Field
Conjectured byHermann Minkowski
Open problemNo
GeneralizationsHahn–Banach separation theorem

In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.

The hyperplane separation theorem is due to Hermann Minkowski. The Hahn–Banach separation theorem generalizes the result to topological vector spaces.

A related result is the supporting hyperplane theorem.

In the context of support-vector machines, the optimally separating hyperplane or maximum-margin hyperplane is a hyperplane which separates two convex hulls of points and is equidistant from the two.[1][2][3]

Statements and proof

Hyperplane separation theorem[4] — Let and be two disjoint nonempty convex subsets of . Then there exist a nonzero vector and a real number such that

for all in and in ; i.e., the hyperplane , the normal vector, separates and .

If both sets are closed, and at least one of them is compact, then the separation can be strict, that is, for some

In all cases, assume to be disjoint, nonempty, and convex subsets of . The summary of the results are as follows:

summary table
closed compact closed with
closed closed compact with
open
open open

The number of dimensions must be finite. In infinite-dimensional spaces there are examples of two closed, convex, disjoint sets which cannot be separated by a closed hyperplane (a hyperplane where a continuous linear functional equals some constant) even in the weak sense where the inequalities are not strict.[5]

Here, the compactness in the hypothesis cannot be relaxed; see an example in the section Counterexamples and uniqueness. This version of the separation theorem does generalize to infinite-dimension; the generalization is more commonly known as the Hahn–Banach separation theorem.

The proof is based on the following lemma:

Lemma — Let and be two disjoint closed subsets of , and assume is compact. Then there exist points and minimizing the distance over and .

Proof of lemma

Let and be any pair of points, and let . Since is compact, it is contained in some ball centered on ; let the radius of this ball be . Let be the intersection of with a closed ball of radius around . Then is compact and nonempty because it contains . Since the distance function is continuous, there exist points and whose distance is the minimum over all pairs of points in . It remains to show that and in fact have the minimum distance over all pairs of points in . Suppose for contradiction that there exist points and such that . Then in particular, , and by the triangle inequality, . Therefore is contained in , which contradicts the fact that and had minimum distance over .


Proof illustration.
Proof of theorem

We first prove the second case. (See the diagram.)

WLOG, is compact. By the lemma, there exist points and of minimum distance to each other. Since and are disjoint, we have . Now, construct two hyperplanes perpendicular to line segment , with across and across . We claim that neither nor enters the space between , and thus the perpendicular hyperplanes to satisfy the requirement of the theorem.

Algebraically, the hyperplanes are defined by the vector , and two constants , such that . Our claim is that and .

Suppose there is some such that , then let be the foot of perpendicular from to the line segment . Since is convex, is inside , and by planar geometry, is closer to than , contradiction. Similar argument applies to .

Now for the first case.

Approach both from the inside by and , such that each is closed and compact, and the unions are the relative interiors . (See relative interior page for details.)

Now by the second case, for each pair there exists some unit vector and real number , such that .

Since the unit sphere is compact, we can take a convergent subsequence, so that . Let . We claim that , thus separating .

Assume not, then there exists some such that , then since , for large enough , we have , contradiction.


Since a separating hyperplane cannot intersect the interiors of open convex sets, we have a corollary:

Separation theorem I — Let and be two disjoint nonempty convex sets. If is open, then there exist a nonzero vector and real number such that

for all in and in . If both sets are open, then there exist a nonzero vector and real number such that

for all in and in .

Case with possible intersections

If the sets have possible intersections, but their relative interiors are disjoint, then the proof of the first case still applies with no change, thus yielding:

Separation theorem II — Let and be two nonempty convex subsets of with disjoint relative interiors. Then there exist a nonzero vector and a real number such that

in particular, we have the supporting hyperplane theorem.

Supporting hyperplane theorem — if is a convex set in and is a point on the boundary of , then there exists a supporting hyperplane of containing .

Proof

If the affine span of is not all of , then extend the affine span to a supporting hyperplane. Else, is disjoint from , so apply the above theorem.

Converse of theorem

Note that the existence of a hyperplane that only "separates" two convex sets in the weak sense of both inequalities being non-strict obviously does not imply that the two sets are disjoint. Both sets could have points located on the hyperplane.

Counterexamples and uniqueness

The theorem does not apply if one of the bodies is not convex.

If one of A or B is not convex, then there are many possible counterexamples. For example, A and B could be concentric circles. A more subtle counterexample is one in which A and B are both closed but neither one is compact. For example, if A is a closed half plane and B is bounded by one arm of a hyperbola, then there is no strictly separating hyperplane:

(Although, by an instance of the second theorem, there is a hyperplane that separates their interiors.) Another type of counterexample has A compact and B open. For example, A can be a closed square and B can be an open square that touches A.

In the first version of the theorem, evidently the separating hyperplane is never unique. In the second version, it may or may not be unique. Technically a separating axis is never unique because it can be translated; in the second version of the theorem, a separating axis can be unique up to translation.

The horn angle provides a good counterexample to many hyperplane separations. For example, in , the unit disk is disjoint from the open interval , but the only line separating them contains the entirety of . This shows that if is closed and is relatively open, then there does not necessarily exist a separation that is strict for . However, if is closed polytope then such a separation exists.[6]

More variants

Farkas' lemma and related results can be understood as hyperplane separation theorems when the convex bodies are defined by finitely many linear inequalities.

More results may be found.[6]

Use in collision detection

In collision detection, the hyperplane separation theorem is usually used in the following form:

Separating axis theorem — Two closed convex objects are disjoint if there exists a line ("separating axis") onto which the two objects' projections are disjoint.

Regardless of dimensionality, the separating axis is always a line. For example, in 3D, the space is separated by planes, but the separating axis is perpendicular to the separating plane.

The separating axis theorem can be applied for fast collision detection between polygon meshes. Each face's normal or other feature direction is used as a separating axis. Note that this yields possible separating axes, not separating lines/planes.

In 3D, using face normals alone will fail to separate some edge-on-edge non-colliding cases. Additional axes, consisting of the cross-products of pairs of edges, one taken from each object, are required.[7]

For increased efficiency, parallel axes may be calculated as a single axis.

See also

Notes

  1. ^ Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (PDF) (Second ed.). New York: Springer. pp. 129–135.
  2. ^ Witten, Ian H.; Frank, Eibe; Hall, Mark A.; Pal, Christopher J. (2016). Data Mining: Practical Machine Learning Tools and Techniques (Fourth ed.). Morgan Kaufmann. pp. 253–254. ISBN 9780128043578.
  3. ^ Deisenroth, Marc Peter; Faisal, A. Aldo; Ong, Cheng Soon (2020). Mathematics for Machine Learning. Cambridge University Press. pp. 337–338. ISBN 978-1-108-45514-5.
  4. ^ Boyd & Vandenberghe 2004, Exercise 2.22.
  5. ^ Haïm Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Remark 4, p. 7.
  6. ^ a b Stoer, Josef; Witzgall, Christoph (1970). Convexity and Optimization in Finite Dimensions I. Springer Berlin, Heidelberg. (2.12.9). doi:10.1007/978-3-642-46216-0. ISBN 978-3-642-46216-0.
  7. ^ "Advanced vector math".

References

  • Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (PDF). Cambridge University Press. ISBN 978-0-521-83378-3.
  • Golshtein, E. G.; Tretyakov, N.V. (1996). Modified Lagrangians and monotone maps in optimization. New York: Wiley. p. 6. ISBN 0-471-54821-9.
  • Shimizu, Kiyotaka; Ishizuka, Yo; Bard, Jonathan F. (1997). Nondifferentiable and two-level mathematical programming. Boston: Kluwer Academic Publishers. p. 19. ISBN 0-7923-9821-1.
  • Soltan, V. (2021). Support and separation properties of convex sets in finite dimension. Extracta Math. Vol. 36, no. 2, 241-278.

Read other articles:

Psocoptera Periode 299–0 jtyl PreЄ Є O S D C P T J K Pg N Cisuralian – Terkini TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoPsocoptera Shipley, 1904 Subordo Trogiomorpha (7 famili) Troctomorpha (34 famili) Psocomorpha (26 famili) lbs Psocoptera (dalam bahasa Inggris dikenal sebagai booklice, barklice, atau barkflies) adalah sebuah ordo serangga.[1] Mereka muncul pertama kali pada periode Permian, 295 hingga 248 juta tahun silam. Ordo ini sering dianggap sebagai y...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Bandar Udara AketiIATA: noneICAO: FZKNInformasiMelayaniAketi, Democratic Republic of the CongoKetinggian dpl375 mdplPetaFZKNBandar udara di Republik Demokratik KongoLandasan pacu Arah Panjang Permukaan m kaki 950 3.117 Sumber: Great Circle Ma...

 

Drivetrain transmitting propulsion power For other uses of the word transmission, see Transmission. Gearbox redirects here. For other uses, see Gearbox (disambiguation). Hydraulic automatic transmission (cutaway view)Epicyclic gearing diagram, as used in hydraulic automatic transmissions A transmission (also called a gearbox) is a mechanical device which uses a gear set—two or more gears working together—to change the speed or direction of rotation in a machine.[1][2] Many...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Unitary authority area in England Unitary authority area in EnglandNorth YorkshireUnitary authority areaRipon, the only city in the district and its third-largest settlement.Shown within the ceremonial county of North YorkshireSovereign stateUnited KingdomCountryEnglandRegionYorkshire and the HumberCeremonial countyNorth YorkshireHistoric countyYorkshireUnitary Authority1 April 2023SeatNorthallertonGovernment • TypeUnitary authority • Local AuthorityNorth Yorkshire Cou...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Cet article est une ébauche concernant une localité suédoise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. MantorpLe circuit national de Suède Mantorp Park situé dans la commune.Nom officiel (sv) MantorpGéographiePays  SuèdeComté ÖstergötlandCommune suédoise MjölbySuperficie 3,54 km2 (2020)Coordonnées 58° 21′ 13″ N, 15° 17′ 08″ EDémographiePo...

 

Cet article est une ébauche concernant le basket-ball et la Suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pully Lausanne Basketball Club Généralités Noms précédents Pully Basket, BBC Lausanne Fondation 1951 Couleurs Rouge et Blanc Salle Salle omnisports Arnold-Reymond Salle omnisports de la Vallée de la Jeunesse Siège Pully Championnat actuel Championnat LNB Président Serge Vittoz Entraîneur ...

 

Group of fruit culttivars This article is about the European plum cultivar. For the species of green plum from Asia, see Prunus mume. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Greengage – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) Greengage Scien...

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

 

Play based on accounts of mental illness The Manic MonologuesPosterWritten byZachary Burton; Elisa HofmeisterDate premieredMay 2019 (May 2019)Place premieredStanford University, California, USAOriginal languageEnglishSubjectMental Illness The Manic Monologues is a play developed and premiered by Zachary Burton and Elisa Hofmeister at Stanford University.[1][2][3][4][5][6][7][8][9][10] The play consists of aut...

 

Series of laptops by IBM and Lenovo ThinkPad T seriesT20 – the first in the T seriesDeveloper IBM: 2000–2005 Lenovo: 2005–present Product familyThinkPadTypeNotebook computerRelease dateMay 2000; 24 years ago (2000-05)Operating systemMicrosoft WindowsCPUIntel Core, AMD Ryzen PROPredecessorIBM ThinkPad 600IBM ThinkPad 770Websitehttps://www.lenovo.com/us/en/c/laptops/thinkpad/thinkpadt This article is part of a series on theThinkPad IBM lines: 800 700 600 500 300 A (...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Estonian politician Indrek TarandMEPMember of the European ParliamentIn office1 July 2009 – 30 June 2019ConstituencyEstonia Personal detailsBorn (1964-02-03) 3 February 1964 (age 60)Tallinn, EstoniaPolitical party EstonianIndependent EUEuropean Green PartySpouseKadi TarandChildren3Alma materUniversity of TartuSAIS Bologna, Johns Hopkins University Indrek Tarand (born 3 February 1964) is an Estonian politician and Member of the European Parliament (MEP) from Estonia. ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة العالم للدراجات على المضمار 1975 التفاصيل التاريخ 1975 الموقع  بلجيكا (روكوت) نوع السباق سباق الدراج...

Un treuil est un appareil de levage. C'est un dispositif mécanique permettant de commander l'enroulement et le déroulement d'un câble, d'une chaîne ou de tout autre type de filin destiné à porter ou à tracter une charge. Le treuil est l'une des huit machines simples. Différents types de démultiplication Treuil de carrière à traction animale (restauration d'un ouvrage du XIXe siècle). Treuil de la carrière Auboin de Châtillon (92), association Picar, membre de l'union Rempar...

 

Jean François GilletNazionalità Belgio Altezza181 cm Peso78 kg Calcio RuoloAllenatore (ex portiere) Squadra Standard Liegi (Portieri) Termine carriera1º luglio 2021 - giocatore CarrieraGiovanili 1989-1996 Standard Liegi Squadre di club1 1996-1999 Standard Liegi4 (-7)1999-2000 Monza37 (-45)2000-2003 Bari76 (-102)2003-2004→  Treviso44 (-48)2004-2011 Bari277 (-306)2011-2012 Bologna29 (-32)2012-2015 Torino49 (-67)2015 Catania16 (-20)2015...

 

Questa voce sull'argomento allenatori di pallacanestro statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Phog AllenNazionalità Stati Uniti Pallacanestro RuoloAllenatore Termine carriera1956 Hall of fameNaismith Hall of Fame (1959) CarrieraCarriera da allenatore Independence H.S.1905-1908Baker University45-91907-1909 Kansas Jayhawks43-91908-1909Haskell University17-51912-1919&...

1941 film by Budd Boetticher, Rouben Mamoulian Blood and SandTheatrical release posterDirected byRouben MamoulianScreenplay byJo SwerlingBased onthe novelby Vicente Blasco IbanezProduced byAssociate producer:Robert T. KaneProducer:Darryl F. ZanuckStarringTyrone PowerLinda DarnellRita HayworthNazimovaAnthony QuinnJ. Carrol NaishLynn BariJohn CarradineLaird CregarMonty BanksVicente GomezCinematographyErnest Palmer, A.S.C.Ray Rennahan, A.S.C.Edited byRobert BischoffMusic byAlfred NewmanVicente G...

 

La Chambre des comptes de Savoie était, au cours de la période médiévale, une cour princière spécialisée dans les affaires de finance du comté, puis du duché de Savoie. Le comté de Savoie a été élevé en duché par l'empereur l'empereur Sigismond Ier, le 19 février 1416. Historique Les possessions de la Maison de Savoie vers 1200 Entre le XIIe et le XVe siècle, la Maison de Savoie va agrandir ses possessions qui vont s'étendre du Viennois et du Bugey à l'ouest, au Valais...