Strong dual space

In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

Strong dual topology

Throughout, all vector spaces will be assumed to be over the field of either the real numbers or complex numbers

Definition from a dual system

Let be a dual pair of vector spaces over the field of real numbers or complex numbers For any and any define

Neither nor has a topology so say a subset is said to be bounded by a subset if for all So a subset is called bounded if and only if This is equivalent to the usual notion of bounded subsets when is given the weak topology induced by which is a Hausdorff locally convex topology.

Let denote the family of all subsets bounded by elements of ; that is, is the set of all subsets such that for every Then the strong topology on also denoted by or simply or if the pairing is understood, is defined as the locally convex topology on generated by the seminorms of the form

The definition of the strong dual topology now proceeds as in the case of a TVS. Note that if is a TVS whose continuous dual space separates point on then is part of a canonical dual system where In the special case when is a locally convex space, the strong topology on the (continuous) dual space (that is, on the space of all continuous linear functionals ) is defined as the strong topology and it coincides with the topology of uniform convergence on bounded sets in i.e. with the topology on generated by the seminorms of the form where runs over the family of all bounded sets in The space with this topology is called strong dual space of the space and is denoted by

Definition on a TVS

Suppose that is a topological vector space (TVS) over the field Let be any fundamental system of bounded sets of ; that is, is a family of bounded subsets of such that every bounded subset of is a subset of some ; the set of all bounded subsets of forms a fundamental system of bounded sets of A basis of closed neighborhoods of the origin in is given by the polars: as ranges over ). This is a locally convex topology that is given by the set of seminorms on : as ranges over

If is normable then so is and will in fact be a Banach space. If is a normed space with norm then has a canonical norm (the operator norm) given by ; the topology that this norm induces on is identical to the strong dual topology.

Bidual

The bidual or second dual of a TVS often denoted by is the strong dual of the strong dual of : where denotes endowed with the strong dual topology Unless indicated otherwise, the vector space is usually assumed to be endowed with the strong dual topology induced on it by in which case it is called the strong bidual of ; that is, where the vector space is endowed with the strong dual topology

Properties

Let be a locally convex TVS.

  • A convex balanced weakly compact subset of is bounded in [1]
  • Every weakly bounded subset of is strongly bounded.[2]
  • If is a barreled space then 's topology is identical to the strong dual topology and to the Mackey topology on
  • If is a metrizable locally convex space, then the strong dual of is a bornological space if and only if it is an infrabarreled space, if and only if it is a barreled space.[3]
  • If is Hausdorff locally convex TVS then is metrizable if and only if there exists a countable set of bounded subsets of such that every bounded subset of is contained in some element of [4]
  • If is locally convex, then this topology is finer than all other -topologies on when considering only 's whose sets are subsets of
  • If is a bornological space (e.g. metrizable or LF-space) then is complete.

If is a barrelled space, then its topology coincides with the strong topology on and with the Mackey topology on generated by the pairing

Examples

If is a normed vector space, then its (continuous) dual space with the strong topology coincides with the Banach dual space ; that is, with the space with the topology induced by the operator norm. Conversely -topology on is identical to the topology induced by the norm on

See also

References

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wong (1979). Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag. ISBN 3-540-09513-6. OCLC 5126158.

Read other articles:

Subdistrik di Distrik Baucau Quelicai (Kelikai) adalah subdistrik di Distrik Baucau, Timor Leste. Wikimedia Commons memiliki media mengenai Quelicai. Artikel bertopik Timor Leste ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

Representation of a small human being, common in alchemy and fiction For other uses, see Homunculus (disambiguation). A homunculus (UK: /hɒˈmʌŋkjʊləs/ hom-UNK-yuul-əs, US: /hoʊˈ-/ hohm-, Latin: [hɔˈmʊŋkʊlʊs]; little person, pl.: homunculi UK: /hɒˈmʌŋkjʊliː/ hom-UNK-yuul-ee, US: /hoʊˈ-/ hohm-, Latin: [hɔˈmʊŋkʊli]) is a small human being.[1] Popularized in sixteenth-century alchemy and nineteenth-century fiction, it has historically referred t...

 

Kring-Kring in the Kost SahurGenreKomedi KuisPemeranMelaney RicardoRina NoseMpok AlpaSurya InsomniaGilang DirgaRizky Inggar NarvastuDanang Pranada DievaCak LontongRigen RakelnaNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiLokasi produksiSoundstage A, Graha Mitra The East BuildingDurasi60 menitRumah produksiNET. EntertainmentDistributorNet Visi MediaRilis asliJaringanNET.Format gambarHDTV (1080i 16:9)Format audioDolby Digital 5.1Rilis21 April (2021-04-21) –12 Mei 2021...

2020 United States House of Representatives elections in Mississippi ← 2018 November 3, 2020 (2020-11-03) 2022 → All 4 Mississippi seats to the United States House of Representatives   Majority party Minority party   Party Republican Democratic Last election 3 1 Seats won 3 1 Seat change Popular vote 806,859 421,121 Percentage 65.71% 34.29% Swing 15.53% 8.18% Republican   60–70%   90>% Democratic ...

 

County in Minnesota, United States County in MinnesotaBenton CountyCountyChurch of Saints Peter and Paul in Gilman, Minnesota. SealLocation within the U.S. state of MinnesotaMinnesota's location within the U.S.Coordinates: 45°42′N 94°00′W / 45.7°N 94°W / 45.7; -94Country United StatesState MinnesotaFoundedOctober 27, 1849 (created)1850 (organized)[1]Named forThomas Hart BentonSeatFoleyLargest citySauk RapidsArea • Total413 sq&...

 

United States expedition to explore the American West The Red River Expedition, also known as the Freeman–Custis Expedition, Freeman Red River Expedition, Sparks Expedition, and officially Exploring Expedition of Red River, was one of the first civilian scientific expeditions to explore the Southwestern United States. The 1806 expedition was ordered to find the headwaters of the Red River (Red River of the South) from the Mississippi River as a possible trading route to Santa Fe, which was ...

Shinji Kagawa香川真司 Kagawa dengan Borussia Dortmund pada tahun 2012Informasi pribadiNama lengkap Shinji KagawaTanggal lahir 17 Maret 1989 (umur 35)Tempat lahir Kobe, Hyōgo, JepangTinggi 1,75 m (5 ft 9 in)[1]Posisi bermain GelandangInformasi klubKlub saat ini Cerezo OsakaNomor 8Karier junior2001–2005 FC MiyagiKarier senior*Tahun Tim Tampil (Gol)2006–2010 Cerezo Osaka 125 (55)2010–2012 Borussia Dortmund 49 (21)2012–2014 Manchester United 38 (6)2014–...

 

Oman Air IATA ICAO Kode panggil WY OMA OMAN AIR Didirikan1993PenghubungBandara Internasional Muscat, OmanProgram penumpang setiaSinbad Frequent Flyer [1]Lounge bandaraOman Air LoungeAnak perusahaan Oman Air Cargo [2] Oman Air Catering [3] Oman Air Engineering [4] Oman Air Holiday [5] Armada27 [6]Tujuan45 (Termasuk Rute Code Sharing) [7]SloganModern Vision, Timeless Tradition...Perusahaan indukKesultanan OmanKantor pusatBandara Internasio...

 

Type of consumer activism Part of a series onAnti-consumerism Theories and ideas Affluenza Alternative culture Anti-capitalism Autonomous building Billboard hacking Buyer's remorse Bioeconomics Buddhist economics Buy Nothing Day Collaborative consumption Collapsology Commodification Commodity fetishism Commons Commune Compulsive buying disorder Conspicuous consumption Consumer capitalism Consumerism Conviviality Criticism of advertising Culture jamming Degrowth Do it yourself Downshifting Dur...

Nicola Walker nel 2012 Nicola Walker (Londra, 15 maggio 1970) è un'attrice britannica. Indice 1 Biografia 2 Filmografia parziale 2.1 Attrice 2.1.1 Cinema 2.2 Televisione 2.3 Doppiatrice 3 Doppiatrici italiane 4 Note 5 Altri progetti 6 Collegamenti esterni Biografia Ha studiato alla Murray Edwards College dell'Università di Cambridge, dove si è anche avvicinata al mondo del teatro. Nel 2013 ha vinto il Laurence Olivier Award alla miglior attrice non protagonista per la sua interpretazione n...

 

For the University of San Diego's athletic teams, see San Diego Toreros. Soccer clubSan Diego TorosFull nameSan Diego TorosFounded1966 (Los Angeles Toros) 1968 (San Diego Toros)Dissolved1968StadiumLos Angeles Memorial Coliseum (1967)Los Angeles, California Balboa Stadium (1968)San Diego, CaliforniaCapacity93,00034,000LeagueNorth American Soccer League Home colors Away colors The San Diego Toros were a professional soccer team based in San Diego, California. Founded in 1967 as the Los Angeles ...

 

Condensadores electrolíticos de diferentes tamaños. Condensador electrolítico Axial (arriba) y radial (abajo). Un condensador electrolítico es un tipo de condensador que usa un líquido iónico conductor como una de sus placas. Típicamente con más capacidad por unidad de volumen que otros tipos de condensadores, son valiosos en circuitos eléctricos con relativa alta corriente y baja frecuencia. Este es especialmente el caso en los filtros de alimentadores de corriente, donde se usan pa...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

كرة المضرب في الألعاب الأولمبية الصيفيةالهيئة الإداريةالاتحاد الدولي لكرة المضربالمنافسات5 (رجال: 2; سيدات: 2; مختلطة: 1)الألعاب 1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 ملاحظة: سنوات الرياضة الترويجية او الاستعراضية موضحة بالأرقام الم...

 

Private school in Zagreb, CroatiaKantakuzina Katarina Branković Serbian Orthodox Secondary SchoolLocationSveti Duh 122Zagreb 10 000CroatiaCoordinates45°49′34″N 15°56′18″E / 45.82611°N 15.93833°E / 45.82611; 15.93833InformationTypePrivateReligious affiliation(s)Serbian Orthodox ChurchEstablished2005FounderMetropolitanate of Zagreb, Ljubljana and all ItalyPrincipalSlobodan Lalić (acting, Bogoljub Ostojić (de facto))[1]Grades9–12GenderCo-edEnrolme...

Matrimonio di Maria Vergine e Giuseppe. La dottrina della verginità perpetua insegna che Maria restò vergine per tutta la vita, anche durante il suo matrimonio con Giuseppe.Dipinto di Raffaello del 1504, Pinacoteca di Brera, Milano. Con Verginità perpetua di Maria si intende la dottrina, tracciabile nella letteratura a partire dal secondo fino al V secolo in alcuni Padri della Chiesa, secondo la quale Maria è rimasta vergine prima, durante e dopo[1][2][3] la nascit...

 

Mer des Laptev Carte de la mer des Laptev. Géographie humaine Pays côtiers Russie Géographie physique Type Mer bordière Localisation Océan Arctique Coordonnées 77° nord, 123° est Superficie 672 000 km2 Profondeur · Moyenne 50 m · Maximale 3 385 m Géolocalisation sur la carte : océan Arctique Mer des Laptev Géolocalisation sur la carte : Russie Mer des Laptev modifier  La mer des Laptev, ou mer de Laptev (en russe : мо́р�...

 

Swedish statesman and poet (1731–1785) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gustaf Philip Creutz – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) Gustav Filip Creutz. Count Gustaf Philip Creutz (Swedish pronunciation: [ˈɡɵ̂sːtav ˈfǐ...

Canine racing sport involving the Greyhound dog breed Dog race and Dog racing redirect here. For the winter sport, see Sled dog racing. For other uses, see Dog racing (disambiguation). Several greyhounds before a race Greyhound racing is an organized, competitive sport in which greyhounds are raced around a track. There are two forms of greyhound racing, track racing (normally around an oval track) and coursing; the latter is now banned in most countries.[1] Track racing uses an artif...

 

Olimpiade Remaja Argentina 2018Logo resmiTuan rumahBuenos Aires, ArgentinaMotoFeel the future(Spanish: Viví el futuro)[1]Jumlah negara206Jumlah atlet3.997Jumlah disiplin239 (32 cabor)Upacara pembukaan6 Oktober 2018; 5 tahun lalu (2018-10-06)Upacara penutupan18 Oktober 2018Dibuka olehMauricio MacriTempat utamaParque Olímpico de la JuventudMusim panas: <  Nanjing 2014 Dakar 2026  > Musim dingin: <  Lillehammer 2016 Lausanne 2020  > Olimpiade Remaja...