Comparison of topologies

In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.

Definition

A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.)

For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology".

Let τ1 and τ2 be two topologies on a set X such that τ1 is contained in τ2:

.

That is, every element of τ1 is also an element of τ2. Then the topology τ1 is said to be a coarser (weaker or smaller) topology than τ2, and τ2 is said to be a finer (stronger or larger) topology than τ1. [nb 1]

If additionally

we say τ1 is strictly coarser than τ2 and τ2 is strictly finer than τ1.[1]

The binary relation ⊆ defines a partial ordering relation on the set of all possible topologies on X.

Examples

The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set and the whole space as open sets.

In function spaces and spaces of measures there are often a number of possible topologies. See topologies on the set of operators on a Hilbert space for some intricate relationships.

All possible polar topologies on a dual pair are finer than the weak topology and coarser than the strong topology.

The complex vector space Cn may be equipped with either its usual (Euclidean) topology, or its Zariski topology. In the latter, a subset V of Cn is closed if and only if it consists of all solutions to some system of polynomial equations. Since any such V also is a closed set in the ordinary sense, but not vice versa, the Zariski topology is strictly weaker than the ordinary one.

Properties

Let τ1 and τ2 be two topologies on a set X. Then the following statements are equivalent:

(The identity map idX is surjective and therefore it is strongly open if and only if it is relatively open.)

Two immediate corollaries of the above equivalent statements are

  • A continuous map f : XY remains continuous if the topology on Y becomes coarser or the topology on X finer.
  • An open (resp. closed) map f : XY remains open (resp. closed) if the topology on Y becomes finer or the topology on X coarser.

One can also compare topologies using neighborhood bases. Let τ1 and τ2 be two topologies on a set X and let Bi(x) be a local base for the topology τi at xX for i = 1,2. Then τ1τ2 if and only if for all xX, each open set U1 in B1(x) contains some open set U2 in B2(x). Intuitively, this makes sense: a finer topology should have smaller neighborhoods.

Lattice of topologies

The set of all topologies on a set X together with the partial ordering relation ⊆ forms a complete lattice that is also closed under arbitrary intersections.[2] That is, any collection of topologies on X have a meet (or infimum) and a join (or supremum). The meet of a collection of topologies is the intersection of those topologies. The join, however, is not generally the union of those topologies (the union of two topologies need not be a topology) but rather the topology generated by the union.

Every complete lattice is also a bounded lattice, which is to say that it has a greatest and least element. In the case of topologies, the greatest element is the discrete topology and the least element is the trivial topology.

The lattice of topologies on a set is a complemented lattice; that is, given a topology on there exists a topology on such that the intersection is the trivial topology and the topology generated by the union is the discrete topology.[3][4]

If the set has at least three elements, the lattice of topologies on is not modular,[5] and hence not distributive either.

See also

  • Initial topology, the coarsest topology on a set to make a family of mappings from that set continuous
  • Final topology, the finest topology on a set to make a family of mappings into that set continuous

Notes

  1. ^ There are some authors, especially analysts, who use the terms weak and strong with opposite meaning (Munkres, p. 78).

References

  1. ^ Munkres, James R. (2000). Topology (2nd ed.). Saddle River, NJ: Prentice Hall. pp. 77–78. ISBN 0-13-181629-2.
  2. ^ Larson, Roland E.; Andima, Susan J. (1975). "The lattice of topologies: A survey". Rocky Mountain Journal of Mathematics. 5 (2): 177–198. doi:10.1216/RMJ-1975-5-2-177.
  3. ^ Steiner, A. K. (1966). "The lattice of topologies: Structure and complementation". Transactions of the American Mathematical Society. 122 (2): 379–398. doi:10.1090/S0002-9947-1966-0190893-2.
  4. ^ Van Rooij, A. C. M. (1968). "The Lattice of all Topologies is Complemented". Canadian Journal of Mathematics. 20: 805–807. doi:10.4153/CJM-1968-079-9.
  5. ^ Steiner 1966, Theorem 3.1.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Naoya Inoue di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimban...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. ImpromptuBerkas:Impromptuposter.jpgTheatrical release posterSutradaraJames LapineProduserStuart OkenDaniel A. SherkowDitulis olehSarah KernochanPemeranJudy DavisHugh GrantMandy PatinkinBernadette PetersJulian SandsEmma ThompsonPenata musikFrédéric ...

 

Bosniak di SerbiaBošnjaci u SrbijiБошњаци у СрбијиLambang kebesaran Dewan Nasional Bosniak di Serbia[1][2]Jumlah populasi153.801 warga negara Serbia di Serbia, 2,31% dari populasi Serbia (sensus 2022)[3]Daerah dengan populasi signifikanDistrik RaškaDistrik Zlatiborwilayah historis Sandžak / RaškaBahasaBosniaAgamaIslam SuniKelompok etnik terkaitSerb dan Slavia Selatan lainnya Bosniak (bahasa Serbia: Бошњаци) adalah kelompok etnik terbesar ke...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: KPLX – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this template message) Radio station in Fort Worth, TexasKPLXFort Worth, TexasBroadcast areaDallas/Fort Worth MetroplexFrequency99.5 MHz (HD Radio)Branding99.5 The Wol...

 

French pirate Michel le BasqueMichael Le Basque, Each Man with a Prisoner, from the Pirates of the Spanish Main series (N19) for Allen & Ginter Cigarettes MET DP835015BornMichel EtchegorriaNationalityKingdom of NavarreOccupation(s)Pirate and flibustierYears active1666-1668Known forCompanion of François L'OlonnaisNotable workSacked Maracaibo and Gibraltar Michel le Basque[1] (born Michel Etchegorria; fl. 1666-1668) was a pirate and flibustier (French buccaneer) from the ...

 

3rd episode of the 1st season of Masters of Horror Dance of the DeadMasters of Horror episodeDVD coverEpisode no.Season 1Episode 3Directed byTobe HooperStory byRichard MathesonTeleplay byRichard Christian MathesonProduced byLisa RichardsonTom RoweFeatured musicBilly CorganEditing byAndrew CohenProduction code103Original air date11 November 2005 (2005-11-11)Running time59 min.Guest appearancesErica CarrollRobert EnglundEmily GrahamLucie GuestJessica LowndesRyan McDonaldMari...

Conference League South 2006-2007 Competizione Conference League South Sport Calcio Edizione 3ª Luogo  Inghilterra Galles Partecipanti 22 Formula girone all'italiana+play-off Risultati Vincitore Histon(1º titolo) Promozioni HistonSalisbury City (dopo play off) Retrocessioni Bedford TownWeston-super-Mare Cronologia della competizione 2005-2006 2007-2008 Manuale La Conference League South 2006-2007 è stata la 3ª edizione della seconda serie della Conference League. Rappresenta, i...

 

Il megas doux Alessio Apocauco (1341-1345), nel suo ufficio. Il megaduca (in greco μέγας δουξ?, megas doux, grande duca, più propriamente gran comandante) era una figura dell'impero bizantino che occupava una delle più alte posizioni nella gerarchia militare. Indice 1 Funzione 2 Storia 3 Lista 4 Note 5 Bibliografia 5.1 Fonti 5.2 Studi 6 Voci correlate Funzione La figura del megaduca, ammiraglio della flotta, venne inserita nei quadri burocratici bizantini dal basileus Alessio ...

 

English local authority election 2005 Essex County Council election ← 2001 9 May 2005 2009 → All 75 seats to Essex County Council38 seats needed for a majority   First party Second party Third party   Party Conservative Labour Liberal Democrats Last election 49 seats, 41.7% 19 seats, 30.6% 10 seats, 24.3% Seats before 48 18 11 Seats won 52 13 8 Seat change 4 5 3 Popular vote 285,899 156,561 147,561 Percentage 44.5% 24.3% 22.9% Swing 2.8...

Neobatrachia Обыкновенная квакша Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКласс:ЗемноводныеПодкласс:Б�...

 

San AngelocityCity of San Angelo San Angelo – Veduta LocalizzazioneStato Stati Uniti Stato federato Texas ConteaTom Green TerritorioCoordinate31°27′N 100°27′W / 31.45°N 100.45°W31.45; -100.45 (San Angelo)Coordinate: 31°27′N 100°27′W / 31.45°N 100.45°W31.45; -100.45 (San Angelo) Altitudine562 m s.l.m. Superficie153,17[1] km² Acque interne5,91 km² (3,86%) Abitanti93 200[2] (2010) Densità608,47...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jefferson Lopes FaustinoInformasi pribadiTanggal lahir 31 Agustus 1988 (umur 35)Tempat lahir BrasilPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2013 Roasso Kumamoto * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Je...

Plumbing fixture Stink pipe redirects here. See also Sanitary sewer § Ventilation. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Drain-waste-vent system – news · newspape...

 

List of events in Ireland in 1952 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1952 in Ireland – news · newspapers · books · scholar · JSTOR (April 2012) (Learn how and when to remove this message) ← 1951 1950 1949 1948 1947 1952 in Ireland → 1953 1954 1955 1956 1957 Centuries: 18th 19th 20th ...

 

Portal Geschichte | Portal Biografien | Aktuelle Ereignisse | Jahreskalender | Tagesartikel ◄ | 19. Jahrhundert | 20. Jahrhundert | 21. Jahrhundert ◄ | 1870er | 1880er | 1890er | 1900er | 1910er | 1920er | 1930er | ► ◄◄ | ◄ | 1897 | 1898 | 1899 | 1900 | 1901 | 1902 | 1903 | 1904 | 1905 | ► | ►► Staatsoberhäupter · Wahlen · Nekrolog · Literaturjahr · Musikjahr · Filmjahr · Sportjahr Kalenderübersicht 1901 Januar Kw Mo Di Mi Do ...

تحتاج هذه المقالة إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. فضلاً، ساهم في تهذيب هذه المقالة من خلال معالجة مشكلات الأسلوب فيها. (نوفمبر 2015) الإرغونوميكس: هو العلم الذي يهتم بتصميم الأدوات والمعدات في بيئة العمل بحيث تتلاءم مع طبيعة الإنسان وحاجياته. وهو ما يساعد في ت�...

 

Historic house in New Jersey, United States United States historic placeWilliam Carlos Williams HouseU.S. National Register of Historic PlacesNew Jersey Register of Historic Places Show map of Bergen County, New JerseyShow map of New JerseyShow map of the United StatesLocation9 Ridge Road, Rutherford, New JerseyCoordinates40°49′36″N 74°6′18″W / 40.82667°N 74.10500°W / 40.82667; -74.10500Area0.5 acres (0.20 ha)Built1913NRHP reference No.730010...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged,...

Questa voce o sezione sull'argomento competizioni calcistiche non è ancora formattata secondo gli standard. Commento: La pagina è tutta da correggere secondo il nuovo modello di voce presente nella pagina Wikipedia:Modello di voce/Stagione di una divisione di un campionato di calcio. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Prima Categoria 1961-1962. Prima Categoria Tridentina 1961-1962 Competizi...

 

Paul Martin 21.° Primer ministro de Canadá 12 de diciembre de 2003-6 de febrero de 2006Monarca Isabel IIPredecesor Jean ChrétienSucesor Stephen Harper Miembro de la Cámara de los Comunes de Canadápor LaSalle—Émard 21 de noviembre de 1988-14 de octubre de 2008Predecesor Claude LanthierSucesor Lise Zarac Información personalNombre de nacimiento Paul Edgar Philippe Martin Nacimiento 28 de agosto de 1938 (85 años) Windsor, Ontario, CanadáResidencia Montreal Nacionalidad Canadiense...