Domain of a function

A function f from X to Y. The set of points in the red oval X is the domain of f.
Graph of the real-valued square root function, f(x) = x, whose domain consists of all nonnegative real numbers

In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be".[1]

More precisely, given a function , the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.

In the special case that X and Y are both sets of real numbers, the function f can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the x-axis of the graph, as the projection of the graph of the function onto the x-axis.

For a function , the set Y is called the codomain: the set to which all outputs must belong. The set of specific outputs the function assigns to elements of X is called its range or image. The image of f is a subset of Y, shown as the yellow oval in the accompanying diagram.

Any function can be restricted to a subset of its domain. The restriction of to , where , is written as .

Natural domain

If a real function f is given by a formula, it may be not defined for some values of the variable. In this case, it is a partial function, and the set of real numbers on which the formula can be evaluated to a real number is called the natural domain or domain of definition of f. In many contexts, a partial function is called simply a function, and its natural domain is called simply its domain.

Examples

  • The function defined by cannot be evaluated at 0. Therefore, the natural domain of is the set of real numbers excluding 0, which can be denoted by or .
  • The piecewise function defined by has as its natural domain the set of real numbers.
  • The square root function has as its natural domain the set of non-negative real numbers, which can be denoted by , the interval , or .
  • The tangent function, denoted , has as its natural domain the set of all real numbers which are not of the form for some integer , which can be written as .

Other uses

The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis, a domain is a non-empty connected open subset of the real coordinate space or the complex coordinate space

Sometimes such a domain is used as the domain of a function, although functions may be defined on more general sets. The two concepts are sometimes conflated as in, for example, the study of partial differential equations: in that case, a domain is the open connected subset of where a problem is posed, making it both an analysis-style domain and also the domain of the unknown function(s) sought.

Set theoretical notions

For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f: XY.[2]

See also

Notes

  1. ^ "Domain, Range, Inverse of Functions". Easy Sevens Education. 10 April 2023. Retrieved 2023-04-13.
  2. ^ Eccles 1997, p. 91 (quote 1, quote 2); Mac Lane 1998, p. 8; Mac Lane, in Scott & Jech 1971, p. 232; Sharma 2010, p. 91; Stewart & Tall 1977, p. 89

References

Read other articles:

Bek Air Penerbangan 2100Pesawat yang mengalami kecelakaan, terlihat pada tahun 2016 ketika masih terbang untuk Kam Air dengan kode registrasi UP-F1007.Ringkasan kecelakaanTanggal27 Desember 2019 (2019-12-27)RingkasanMenabrak medan saat lepas landas, dalam investigasiLokasiDekat Bandar Udara Internasional Almaty, Almaty, Kazakhstan43°21′55″N 77°04′17″E / 43.36528°N 77.07139°E / 43.36528; 77.07139Koordinat: 43°21′55″N 77°04′17″E / þ...

 

 

Ini adalah nama Batak Toba, marganya adalah Simatupang. Abdul Manan Simatupang Bupati Asahan ke-5Masa jabatan11 Mei 1966 – 31 Januari 1979PresidenSoehartoGubernurMarah Halim HarahapEdward Wellington Pahala Tambunan PendahuluUsman J.S.PenggantiBahmid Muhammad Informasi pribadiLahir(1924-05-26)26 Mei 1924Tinggi Raja, Asahan, Keresidenan Sumatra TimurMeninggal6 Mei 1995(1995-05-06) (umur 70)Mekkah, Arab SaudiPartai politikGolkarSunting kotak info • L • B H. Abdu...

 

 

19th-century charitable schools in Britain Ragged schoolRagged school and Working Girls Home doorway, Dantzic Street, ManchesterFormation1844TypeNonprofitPurposeSocial and educational reformHeadquartersLondon, EnglandLocationGreat BritainRegion served England, Scotland, and WalesRemarksRagged Schools became the Shaftesbury Society, which merged with John Grooms in 2007 and adopted the name Livability. Ragged schools were charitable organisations dedicated to the free education of destitute ch...

Barron'sSampul 11 Oktober 2010 Barron'sKategoriBisnisFrekuensiMingguanTotal sirkulasi(2013)305,513[1]PendiriClarence W. BarronTerbitan pertama1921 (1921)PerusahaanDow Jones & Company (News Corp)NegaraAmerika SerikatBerpusat diNew York CitySitus webwww.barrons.comISSN1077-8039 Barron's adalah sebuah surat kabar mingguan Amerika yang didirikan pada 1921 oleh Clarence Walker Barron. Surat kabar tersebut menyoroti informasi keuangan, perkembangan pasar, dan statistik relevan. Set...

 

 

Wakil Bupati KerinciPetahanaIr. H. Ami Tahersejak 4 Maret 2019Masa jabatan5 tahunDibentuk2004Pejabat pertamaH. Hasani HamidSitus webkerincikab.go.id/public/ Berikut ini adalah daftar Wakil Bupati Kerinci dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 H.Hasani Hamid 2004 2009 1   Letkol Czi (Purn.) H.Fauzi Siin 2 H.Muhammad Rahman 2009 2014 2   H.MurasmanS.Pd., M.M. 3 H.Zainal AbidinS.H., M.H. 4 Maret 2014 15 Februari 2018 3 [Ket. 1] Dr...

 

 

Untuk kegunaan lain, lihat Sweet Secret (disambiguasi). Love & SecretPoster promosi untuk Love & SecretGenreRomansaKorporasiKeluargaDitulis olehKim Kyung-heeSutradaraPark Man-youngPemeranShin So-yul Kim Heung-sooNegara asalKorea SelatanBahasa asliKoreaJmlh. episode102ProduksiProduser eksekutifJung Hae-ryongDurasiSenin sampai Jumat pukul 19:50 (WSK)Rumah produksiiWill MediaRilis asliJaringanKorean Broadcasting SystemRilis11 November 2014 (2014-11-11) –3 April 2015 (201...

Polish psychologist (1931–2020) Jan Strelau Jan Strelau (born 30 May 1931 in Gdańsk; died 4 August 2020 in Warsaw) was a Polish psychologist best known for his studies on temperament. He was professor of psychology at Warsaw University from 1968 to 2001 and was since 2001 professor at Warsaw School of Social Sciences and Humanities, where he took the positions of Vice-rector for Research and International Affairs (2002–2010), Vice-rector for Research (2010–2012), and the Chairman of th...

 

 

Red Bull RB15 La Red Bull RB15 di Max Verstappen Descrizione generale Costruttore  Red Bull Racing Categoria Formula 1 Squadra Aston Martin Red Bull Racing Progettata da Adrian NeweyRob MarshallPierre WachéSteve WinstanleyDave WornerBen WaterhouseDan FallowsCraig Skinner Sostituisce Red Bull RB14 Sostituita da Red Bull RB16 Descrizione tecnica Meccanica Telaio Monoscocca in Fibra di carbonio Motore Honda RA619H, V6 1.6 a 90° Turbo Ibrido Trasmissione Cambio sequenziale a 8 rapporti + ...

 

 

AGARD-C standard wind tunnel model on a sting fixture (CAD model) AGARD-C wind tunnel model on a bent sting (CAD model) A hypothetical wind tunnel model on a Z-sting (CAD model) In experimental fluid mechanics, a sting is a test fixture on which models are mounted for testing, e.g. in a wind tunnel. A sting is usually a long shaft attaching to the downstream end of the model so that it does not much disturb the flow over the model. The rear end of a sting usually has a conical fairing blendin...

1915–1934 military occupation For the 1994–1995 United States occupation, see Operation Uphold Democracy. United States occupation of HaitiPart of the Banana WarsTop to bottom, left to right: United States Marines in 1915 defending entrance gate in Cap-Haïtien, United States Marines and a Haitian guide patrolling the jungle during the Battle of Fort Dipitie, United States Navy Curtiss HS-2Ls and other airplanes in Haiti circa 1919DateJuly 28, 1915 – August 1, 1934(19 years and 4&#...

 

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

DC Comics superheroes For the race of androids created by the Guardians of the Universe as a forerunner to the Green Lantern Corps, see Manhunters (DC Comics). Not to be confused with Martian Manhunter. Comics character ManhunterThe first three Manhunters as depicted in Secret Origins vol. 2 #22 (January 1988). Art by Walt Simonson.Publication informationPublisher(All) DC Comics(Richards)Originally Quality ComicsFirst appearance(Kirk) Adventure Comics #58 (January 1941)(Richards)Police Comics...

Voce principale: Delfino Pescara 1936. Pescara CalcioStagione 1994-1995Sport calcio Squadra Pescara Allenatore Giorgio Rumignani (1ª-13ª) Francesco Oddo (14ª-38ª) Presidente Pietro Scibilia Serie B11º posto Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Gelsi, Loseto e Palladini (32) Miglior marcatoreCampionato: Di Giannatale (8) StadioAdriatico Abbonati0 [1] Maggior numero di spettatori11061 vs Udinese (4 settembre 1994) Minor numero di spettatori646 vs Cesena (23 di...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)   هذه المقالة عن الدول التي لم تشترك في الحرب العالمية الثانية. لمعانٍ أخرى، طالع الدول المحايدة (تو�...

العلاقات النمساوية الإريترية النمسا إريتريا   النمسا   إريتريا تعديل مصدري - تعديل   العلاقات النمساوية الإريترية هي العلاقات الثنائية التي تجمع بين النمسا وإريتريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

 

 

Final Piala FA 1921TurnamenPiala FA 1920–1921 Tottenham Hotspur Wolverhampton Wanderers 1 0 Tanggal23 April 1921StadionStamford Bridge, LondonWasitS. DaviesPenonton72.805← 1920 1922 → Final Piala FA 1921 adalah pertandingan sepak bola antara Tottenham Hotspur dan Wolverhampton Wanderers yang diselenggarakan pada 23 April 1921 di Stamford Bridge, London. Pertandingan ini merupakan pertandingan final ke-46 Piala FA sebagai pertandingan penentu pemenang musim 1920–1921. Pertandin...

 

 

Species of butterfly Aphnaeus orcas Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Lycaenidae Genus: Aphnaeus Species: A. orcas Binomial name Aphnaeus orcas(Drury, 1782)[1] Synonyms Papilio orcas Drury, 1782 Aphnaeus guttatus Plötz, 1880 Aphnaeus hollandi Butler, 1902 Aphnaeus rattrayi Sharpe, 1904 Aphnaeus orcas var. heliodorus Schultze, 1916 Aphnaeus orcas f. overlaeti Berger, 1953 Aphnaeus orcas f. fo...

У этого термина существуют и другие значения, см. Microdrive (значения). IBM 1 GB Microdrive Устройство микродрайва Seagate 5 Гб (монета в 50 евроцентов для сравнения размеров) Microdrive — торговая марка миниатюрных жёстких дисков, созданная IBM и впоследствии проданная Hitachi. Винчестеры этой м�...

 

 

2016 Equatorial Guinean presidential election ← 2009 24 April 2016 2022 → Registered325,548Turnout92.70%   Nominee Teodoro Obiang Nguema Mbasogo Avelino Mocache Party PDGE UCD Popular vote 271,177 4,556 Percentage 93.53% 1.57% Results by district (districts won by Obiang in green) President before election Teodoro Obiang Nguema Mbasogo PDGE Elected President Teodoro Obiang Nguema Mbasogo PDGE Politics of Equatorial Guinea Constitution Human rights Government P...