Inaccessible cardinal

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

The term "inaccessible cardinal" is ambiguous. Until about 1950, it meant "weakly inaccessible cardinal", but since then it usually means "strongly inaccessible cardinal". An uncountable cardinal is weakly inaccessible if it is a regular weak limit cardinal. It is strongly inaccessible, or just inaccessible, if it is a regular strong limit cardinal (this is equivalent to the definition given above). Some authors do not require weakly and strongly inaccessible cardinals to be uncountable (in which case is strongly inaccessible). Weakly inaccessible cardinals were introduced by Hausdorff (1908), and strongly inaccessible ones by Sierpiński & Tarski (1930) and Zermelo (1930); in the latter they were referred to along with as Grenzzahlen (English "limit numbers").[1]

Every strongly inaccessible cardinal is also weakly inaccessible, as every strong limit cardinal is also a weak limit cardinal. If the generalized continuum hypothesis holds, then a cardinal is strongly inaccessible if and only if it is weakly inaccessible.

(aleph-null) is a regular strong limit cardinal. Assuming the axiom of choice, every other infinite cardinal number is regular or a (weak) limit. However, only a rather large cardinal number can be both and thus weakly inaccessible.

An ordinal is a weakly inaccessible cardinal if and only if it is a regular ordinal and it is a limit of regular ordinals. (Zero, one, and ω are regular ordinals, but not limits of regular ordinals.) A cardinal which is weakly inaccessible and also a strong limit cardinal is strongly inaccessible.

The assumption of the existence of a strongly inaccessible cardinal is sometimes applied in the form of the assumption that one can work inside a Grothendieck universe, the two ideas being intimately connected.

Models and consistency

Suppose that is a cardinal number. Zermelo–Fraenkel set theory with Choice (ZFC) implies that the th level of the Von Neumann universe is a model of ZFC whenever is strongly inaccessible. Furthermore, ZF implies that the Gödel universe is a model of ZFC whenever is weakly inaccessible. Thus, ZF together with "there exists a weakly inaccessible cardinal" implies that ZFC is consistent. Therefore, inaccessible cardinals are a type of large cardinal.

If is a standard model of ZFC and is an inaccessible in , then

  1. is one of the intended models of Zermelo–Fraenkel set theory;
  2. is one of the intended models of Mendelson's version of Von Neumann–Bernays–Gödel set theory which excludes global choice, replacing limitation of size by replacement and ordinary choice;
  3. and is one of the intended models of Morse–Kelley set theory.

Here, is the set of Δ0-definable subsets of X (see constructible universe). It is worth pointing out that the first claim can be weakened: does not need to be inaccessible, or even a cardinal number, in order for to be a standard model of ZF (see below).

Suppose is a model of ZFC. Either contains no strong inaccessible or, taking to be the smallest strong inaccessible in , is a standard model of ZFC which contains no strong inaccessibles. Thus, the consistency of ZFC implies consistency of ZFC+"there are no strong inaccessibles". Similarly, either V contains no weak inaccessible or, taking to be the smallest ordinal which is weakly inaccessible relative to any standard sub-model of , then is a standard model of ZFC which contains no weak inaccessibles. So consistency of ZFC implies consistency of ZFC+"there are no weak inaccessibles". This shows that ZFC cannot prove the existence of an inaccessible cardinal, so ZFC is consistent with the non-existence of any inaccessible cardinals.

The issue whether ZFC is consistent with the existence of an inaccessible cardinal is more subtle. The proof sketched in the previous paragraph that the consistency of ZFC implies the consistency of ZFC + "there is not an inaccessible cardinal" can be formalized in ZFC. However, assuming that ZFC is consistent, no proof that the consistency of ZFC implies the consistency of ZFC + "there is an inaccessible cardinal" can be formalized in ZFC. This follows from Gödel's second incompleteness theorem, which shows that if ZFC + "there is an inaccessible cardinal" is consistent, then it cannot prove its own consistency. Because ZFC + "there is an inaccessible cardinal" does prove the consistency of ZFC, if ZFC proved that its own consistency implies the consistency of ZFC + "there is an inaccessible cardinal" then this latter theory would be able to prove its own consistency, which is impossible if it is consistent.

There are arguments for the existence of inaccessible cardinals that cannot be formalized in ZFC. One such argument, presented by Hrbáček & Jech (1999, p. 279), is that the class of all ordinals of a particular model M of set theory would itself be an inaccessible cardinal if there was a larger model of set theory extending M and preserving powerset of elements of M.

Existence of a proper class of inaccessibles

There are many important axioms in set theory which assert the existence of a proper class of cardinals which satisfy a predicate of interest. In the case of inaccessibility, the corresponding axiom is the assertion that for every cardinal μ, there is an inaccessible cardinal κ which is strictly larger, μ < κ. Thus, this axiom guarantees the existence of an infinite tower of inaccessible cardinals (and may occasionally be referred to as the inaccessible cardinal axiom). As is the case for the existence of any inaccessible cardinal, the inaccessible cardinal axiom is unprovable from the axioms of ZFC. Assuming ZFC, the inaccessible cardinal axiom is equivalent to the universe axiom of Grothendieck and Verdier: every set is contained in a Grothendieck universe. The axioms of ZFC along with the universe axiom (or equivalently the inaccessible cardinal axiom) are denoted ZFCU (not to be confused with ZFC with urelements). This axiomatic system is useful to prove for example that every category has an appropriate Yoneda embedding.

This is a relatively weak large cardinal axiom since it amounts to saying that ∞ is 1-inaccessible in the language of the next section, where ∞ denotes the least ordinal not in V, i.e. the class of all ordinals in your model.

α-inaccessible cardinals and hyper-inaccessible cardinals

The term "α-inaccessible cardinal" is ambiguous and different authors use inequivalent definitions. One definition is that a cardinal κ is called α-inaccessible, for any ordinal α, if κ is inaccessible and for every ordinal β < α, the set of β-inaccessibles less than κ is unbounded in κ (and thus of cardinality κ, since κ is regular). In this case the 0-inaccessible cardinals are the same as strongly inaccessible cardinals. Another possible definition is that a cardinal κ is called α-weakly inaccessible if κ is regular and for every ordinal β < α, the set of β-weakly inaccessibles less than κ is unbounded in κ. In this case the 0-weakly inaccessible cardinals are the regular cardinals and the 1-weakly inaccessible cardinals are the weakly inaccessible cardinals.

The α-inaccessible cardinals can also be described as fixed points of functions which count the lower inaccessibles. For example, denote by ψ0(λ) the λth inaccessible cardinal, then the fixed points of ψ0 are the 1-inaccessible cardinals. Then letting ψβ(λ) be the λth β-inaccessible cardinal, the fixed points of ψβ are the (β+1)-inaccessible cardinals (the values ψβ+1(λ)). If α is a limit ordinal, an α-inaccessible is a fixed point of every ψβ for β < α (the value ψα(λ) is the λth such cardinal). This process of taking fixed points of functions generating successively larger cardinals is commonly encountered in the study of large cardinal numbers.

The term hyper-inaccessible is ambiguous and has at least three incompatible meanings. Many authors use it to mean a regular limit of strongly inaccessible cardinals (1-inaccessible). Other authors use it to mean that κ is κ-inaccessible. (It can never be κ+1-inaccessible.) It is occasionally used to mean Mahlo cardinal.

The term α-hyper-inaccessible is also ambiguous. Some authors use it to mean α-inaccessible. Other authors use the definition that for any ordinal α, a cardinal κ is α-hyper-inaccessible if and only if κ is hyper-inaccessible and for every ordinal β < α, the set of β-hyper-inaccessibles less than κ is unbounded in κ.

Hyper-hyper-inaccessible cardinals and so on can be defined in similar ways, and as usual this term is ambiguous.

Using "weakly inaccessible" instead of "inaccessible", similar definitions can be made for "weakly α-inaccessible", "weakly hyper-inaccessible", and "weakly α-hyper-inaccessible".

Mahlo cardinals are inaccessible, hyper-inaccessible, hyper-hyper-inaccessible, ... and so on.

Two model-theoretic characterisations of inaccessibility

Firstly, a cardinal κ is inaccessible if and only if κ has the following reflection property: for all subsets , there exists such that is an elementary substructure of . (In fact, the set of such α is closed unbounded in κ.) Therefore, is -indescribable for all n ≥ 0. On the other hand, there is not necessarily an ordinal such that , and if this holds, then must be the th inaccessible cardinal.[2]

It is provable in ZF that has a somewhat weaker reflection property, where the substructure is only required to be 'elementary' with respect to a finite set of formulas. Ultimately, the reason for this weakening is that whereas the model-theoretic satisfaction relation can be defined, semantic truth itself (i.e. ) cannot, due to Tarski's theorem.

Secondly, under ZFC Zermelo's categoricity theorem can be shown, which states that is inaccessible if and only if is a model of second order ZFC.

In this case, by the reflection property above, there exists such that is a standard model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a stronger hypothesis than the existence of a transitive model of ZFC.

Inaccessibility of is a property over ,[3] while a cardinal being inaccessible (in some given model of containing ) is .[4]

See also

Works cited

  • Drake, F. R. (1974), Set Theory: An Introduction to Large Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, Elsevier Science, ISBN 0-444-10535-2
  • Hausdorff, Felix (1908), "Grundzüge einer Theorie der geordneten Mengen", Mathematische Annalen, 65 (4): 435–505, doi:10.1007/BF01451165, hdl:10338.dmlcz/100813, ISSN 0025-5831, S2CID 119648544
  • Hrbáček, Karel; Jech, Thomas (1999), Introduction to set theory (3rd ed.), New York: Dekker, ISBN 978-0-8247-7915-3
  • Kanamori, Akihiro (2003), The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings (2nd ed.), Springer, ISBN 3-540-00384-3
  • Sierpiński, Wacław; Tarski, Alfred (1930), "Sur une propriété caractéristique des nombres inaccessibles" (PDF), Fundamenta Mathematicae, 15: 292–300, doi:10.4064/fm-15-1-292-300, ISSN 0016-2736
  • Zermelo, Ernst (1930), "Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grundlagen der Mengenlehre" (PDF), Fundamenta Mathematicae, 16: 29–47, doi:10.4064/fm-16-1-29-47, ISSN 0016-2736. English translation: Ewald, William B. (1996), "On boundary numbers and domains of sets: new investigations in the foundations of set theory", From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Oxford University Press, pp. 1208–1233, ISBN 978-0-19-853271-2.

References

  1. ^ A. Kanamori, "Zermelo and Set Theory", p.526. Bulletin of Symbolic Logic vol. 10, no. 4 (2004). Accessed 21 August 2023.
  2. ^ A. Enayat, "Analogues of the MacDowell-Specker_theorem for set theory" (2020), p.10. Accessed 9 March 2024.
  3. ^ K. Hauser, "Indescribable cardinals and elementary embeddings". Journal of Symbolic Logic vol. 56, iss. 2 (1991), pp.439--457.
  4. ^ K. J. Devlin, "Indescribability Properties and Small Large Cardinals" (1974). In ISILC Logic Conference: Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974, Lecture Notes in Mathematics, vol. 499 (1974)

Read other articles:

Javier Lozano BarragánPresiden Emeritus Dewan Kepausan bagi Bantuan Pastoral untuk Pekerja Perawatan KesehatanPenunjukan7 Januari 1997Masa jabatan berakhir18 April 2009PendahuluFiorenzo AngeliniPenerusZygmunt ZimowskiJabatan lainKardinal-Imam of S. DoroteaImamatTahbisan imam30 October 1955oleh Carlo ConfalonieriTahbisan uskup15 August 1979oleh Ernesto Corripio y AhumadaPelantikan kardinal21 Oktober 2003PeringkatKardinal-ImamInformasi pribadiNama lahirJavier Lozano BarragánLahir26 ...

 

Artikel ini perlu dikembangkan dari artikel terkait di Wikipedia bahasa Inggris. (Juli 2023) klik [tampil] untuk melihat petunjuk sebelum menerjemahkan. Lihat versi terjemahan mesin dari artikel bahasa Inggris. Terjemahan mesin Google adalah titik awal yang berguna untuk terjemahan, tapi penerjemah harus merevisi kesalahan yang diperlukan dan meyakinkan bahwa hasil terjemahan tersebut akurat, bukan hanya salin-tempel teks hasil terjemahan mesin ke dalam Wikipedia bahasa Indonesia. Jangan...

 

Juan Arremón La formazione dell'Uruguay del 1928 Nazionalità  Uruguay Calcio Ruolo Attaccante Termine carriera 1935 Carriera Giovanili 1916-1921 Peñarol Squadre di club1 1921-1935 Peñarol? (?) Nazionale 1923-1929 Uruguay14 (1) Palmarès  Olimpiadi Oro Amsterdam 1928  Campeonato Sudamericano de Football Argento Perù 1927 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. ...

Robert Nobel Robert Nobel (1829-1896) ialah putra tertua Immanuel Nobel. Ia bekerja untuk saudaranya Ludvig saat ia berminat dalam kilang minyak di Baku pada 1876. Ia dan saudaranya mendirikan Branobel, yang menjadi perusahaan minyak awal yang penting yang mengendalikan banyak output Rusia. Referensi Yergin, Daniel (1991). The Prize: The Epic Quest for Oil, Money & Power. Free Press. ISBN 0-671-79932-0.  Artikel bertopik biografi tokoh ini adalah sebuah rintisan. Anda dapat membantu ...

 

French painter and sculptor This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) You can help expand this article with text translated from the corresponding article in French. (October 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary ...

 

10th–12th century empire in western Deccan, South India This article is about the Western Chalukya Empire. For other dynasties, see Chalukya (disambiguation). Western Chalukya EmpireKalyani Chalukya975–1184[1]Extent of Western Chalukya Empire, 1121 CE[2]StatusEmpire(Subordinate to Rashtrakuta until 973)CapitalManyakhetaBasavakalyanCommon languagesKannadaSanskritReligion HinduismJainismGovernmentMonarchyKing • 957–997 Tailapa II• 1184–1189 Somesh...

Resistance movements opposed to the German occupation of the Netherlands during World War II Members of the Veghel Resistance with troops of the United States 101st Airborne Division in Veghel in front of the Lambertus church during Operation Market Garden, September 1944. The resistance fighters are Bert van Roosmalen and Janus van de Meerakker from the village Eerde. Resistance group operating near Dalfsen, Ommen and Lemelerveld The Dutch resistance (Dutch: Nederlands verzet) to the German ...

 

Mal Ciputra SemarangLokasiSemarangAlamatJalan Simpang Lima No. 1, Pekunden, Semarang Tengah, Semarang, Jawa TengahTanggal dibuka12 Desember 1993PengembangCiputra GroupPemilikPT Karya Andarila(Ciputra Group)ArsitekDesign InternationalArkoninBeca Carter, Hollings & FernerJumlah lantai3Akses transportasi umum Mal Ciputra Semarang (Hanacaraka: ꦩꦭ꧀​ꦕꦶꦥꦸꦠꦿ​ꦱꦼꦩꦫꦁ) adalah sebuah pusat perbelanjaan di Semarang, Indonesia. Pusat perbelanjaan ini berdiri pada tanggal ...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

Cet article est une ébauche concernant un hôtel aux États-Unis et le Nebraska. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Hôtel DecoVue de l'hôtel Deco en juillet 2013.LocalisationLocalisation Omaha, comté de Douglas, Nebraska  États-UnisCoordonnées 41° 15′ 25″ N, 95° 56′ 10″ OArchitectureType HôtelPatrimonialité Inscrit au NRHP (1984)ÉquipementsN...

 

William Thomas BlanfordLahir(1832-10-07)7 Oktober 1832LondonMeninggal23 Juni 1905(1905-06-23) (umur 72)London William Thomas Blanford (7 Oktober 1832 – 23 Juni 1905) geologis dan naturalis Inggris. Dia diingat sebagai seorang editor dalam serial utama The Fauna of British India, Including Ceylon and Burma.[1] Karya 1879: A manual of the geology of India - volume 2 - dengan Henry Benedict Medlicott, Valentine Ball, Frederick Richard Mallet 1888: Mammalia 1889: Birds - volume 1 ...

 

هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (سبتمبر 2016) يوم وزمان (UT)اعتدالان وانقلابان على الأرض[1] زمان الاعتدالالربيعي الانقلابالصيفي الاعتدالالخريفي الانقلابالشتوي شهر مارس يونيو سبتمبر ديسمبر سنة يوم ساعة يوم ساعة ...

Northern Irish newspaper The Irish NewsThe Irish News, 23 February 2007TypeDaily newspaperFormatOriginally Broadsheet, then Berliner but Compact since 2005Owner(s)Fitzpatrick familyFounder(s)Bishop Patrick MacAlisterPublisherThe Irish News Ltd[1]EditorNoel DoranFounded15 August 1891Political alignmentCentre – Centre-leftIrish nationalism(with Liberal Unionist columnists)LanguageEnglish, IrishHeadquartersFountain Centre, College StreetBelfast, Northern IrelandCirculation23,615 (a...

 

Ethnic Germans of Latvia and Estonia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Baltic Germans – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this message) Ethnic group Baltic GermansGerman: Deutsch-BaltenTotal populationc. 5,200(Germans currently in Latvia...

 

Philus antennatus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Philus Spesies: Philus antennatus Philus antennatus adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Philus, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau k...

XIV secolo · XV secolo · XVI secolo Anni 1470 · Anni 1480 · Anni 1490 · Anni 1500 · Anni 1510 1489 · 1490 · 1491 · 1492 · 1493 · 1494 · 1495 · 1496 · 1497 Il 1493 (MCDXCIII in numeri romani) è un anno del XV secolo. 1493 negli altri calendariCalendario gregoriano1493 Ab Urbe condita2246 (MMCCXLVI) Calendario armeno941 — 942 Calendario bengalese899 — 900 Calendario berbero2443 Calendario biza...

 

Madonna del Diadema bluAutoriRaffaello Sanzio e Giovan Francesco Penni Data1510-1511 circa TecnicaOlio su tavola Dimensioni68×44 cm UbicazioneMuseo del Louvre, Parigi Dettaglio del paesaggio La Madonna del Diadema blu è un dipinto a olio su tavola (58x44 cm) di Raffaello Sanzio e Giovan Francesco Penni, databile al 1510-1511 circa e conservato nel Museo del Louvre a Parigi. Indice 1 Storia 2 Descrizione e stile 3 Bibliografia 4 Voci correlate 5 Altri progetti 6 Collegamenti esterni...

 

Former amusement park in Houston, Texas Playland ParkGiant Skyrocket roller coaster, May 1943[1]LocationHouston, Texas, U.S.StatusDefunctOpened1940Closed1967OwnerLouis SluskySloganFun for the whole family!AttractionsTotal10 - 30Roller coasters1 Playland Park was an amusement park located in Houston, Texas operating between 1940 and 1967. Louis Slusky opened Playland Park in 1940 at 9200 South Main. It is remembered for its wooden roller coaster, Giant Skyrocket. Texas' first elevated ...

Walter RambaldiNazionalità Italia Calcio RuoloAttaccante CarrieraSquadre di club1 1938-1939 Molinella? (?)1939-1940 Prato18 (9)1940-1941 S.A.S.I.B.? (?)1941-1944 Panigale51 (52)1945-1946 Panigale18 (?)1946-1947 Forti e Liberi27 (8)1947-1948 Altedo? (?) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito.   Modifica dati su Wikidata · Manuale Walter Rambaldi (B...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this message) Map of Bermuda Pink buses of Bermuda Bermuda consists of several islands with an area of 53.2 km2 (20.5 sq mi) with 447 km (278 mi) of paved roads — 225 km (140 mi) of which are public roads and 222 km (138 ...