True arithmetic

In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers.[1] This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.

Definition

The signature of Peano arithmetic includes the addition, multiplication, and successor function symbols, the equality and less-than relation symbols, and a constant symbol for 0. The (well-formed) formulas of the language of first-order arithmetic are built up from these symbols together with the logical symbols in the usual manner of first-order logic.

The structure is defined to be a model of Peano arithmetic as follows.

  • The domain of discourse is the set of natural numbers,
  • The symbol 0 is interpreted as the number 0,
  • The function symbols are interpreted as the usual arithmetical operations on ,
  • The equality and less-than relation symbols are interpreted as the usual equality and order relation on .

This structure is known as the standard model or intended interpretation of first-order arithmetic.

A sentence in the language of first-order arithmetic is said to be true in if it is true in the structure just defined. The notation is used to indicate that the sentence is true in

True arithmetic is defined to be the set of all sentences in the language of first-order arithmetic that are true in , written Th(). This set is, equivalently, the (complete) theory of the structure .[2]

Arithmetic undefinability

The central result on true arithmetic is the undefinability theorem of Alfred Tarski (1936). It states that the set Th() is not arithmetically definable. This means that there is no formula in the language of first-order arithmetic such that, for every sentence θ in this language,

Here is the numeral of the canonical Gödel number of the sentence θ.

Post's theorem is a sharper version of the undefinability theorem that shows a relationship between the definability of Th() and the Turing degrees, using the arithmetical hierarchy. For each natural number n, let Thn() be the subset of Th() consisting of only sentences that are or lower in the arithmetical hierarchy. Post's theorem shows that, for each n, Thn() is arithmetically definable, but only by a formula of complexity higher than . Thus no single formula can define Th(), because

but no single formula can define Thn() for arbitrarily large n.

Computability properties

As discussed above, Th() is not arithmetically definable, by Tarski's theorem. A corollary of Post's theorem establishes that the Turing degree of Th() is 0(ω), and so Th() is not decidable nor recursively enumerable.

Th() is closely related to the theory Th() of the recursively enumerable Turing degrees, in the signature of partial orders.[3] In particular, there are computable functions S and T such that:

  • For each sentence φ in the signature of first-order arithmetic, φ is in Th() if and only if S(φ) is in Th().
  • For each sentence ψ in the signature of partial orders, ψ is in Th() if and only if T(ψ) is in Th().

Model-theoretic properties

True arithmetic is an unstable theory, and so has models for each uncountable cardinal . As there are continuum many types over the empty set, true arithmetic also has countable models. Since the theory is complete, all of its models are elementarily equivalent.

True theory of second-order arithmetic

The true theory of second-order arithmetic consists of all the sentences in the language of second-order arithmetic that are satisfied by the standard model of second-order arithmetic, whose first-order part is the structure and whose second-order part consists of every subset of .

The true theory of first-order arithmetic, Th(), is a subset of the true theory of second-order arithmetic, and Th() is definable in second-order arithmetic. However, the generalization of Post's theorem to the analytical hierarchy shows that the true theory of second-order arithmetic is not definable by any single formula in second-order arithmetic.

Simpson (1977) has shown that the true theory of second-order arithmetic is computably interpretable with the theory of the partial order of all Turing degrees, in the signature of partial orders, and vice versa.

Notes

References

  • Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002), Computability and logic (4th ed.), Cambridge University Press, ISBN 978-0-521-00758-0.
  • Bovykin, Andrey; Kaye, Richard (2001), "On order-types of models of arithmetic", in Zhang, Yi (ed.), Logic and algebra, Contemporary Mathematics, vol. 302, American Mathematical Society, pp. 275–285, ISBN 978-0-8218-2984-4.
  • Shore, Richard (2011), "The recursively enumerable degrees", in Griffor, E.R. (ed.), Handbook of Computability Theory, Studies in Logic and the Foundations of Mathematics, vol. 140, North-Holland (published 1999), pp. 169–197, ISBN 978-0-444-54701-9.
  • Simpson, Stephen G. (1977), "First-order theory of the degrees of recursive unsolvability", Annals of Mathematics, Second Series, 105 (1), Annals of Mathematics: 121–139, doi:10.2307/1971028, ISSN 0003-486X, JSTOR 1971028, MR 0432435
  • Tarski, Alfred (1936), "Der Wahrheitsbegriff in den formalisierten Sprachen". An English translation "The Concept of Truth in Formalized Languages" appears in Corcoran, J., ed. (1983), Logic, Semantics and Metamathematics: Papers from 1923 to 1938 (2nd ed.), Hackett Publishing Company, Inc., ISBN 978-0-915144-75-4

Read other articles:

Warehouse district in Hamburg, Germany SpeicherstadtView from Poggenmühlenbrücke at nightGeneral informationTypewarehouse districtArchitectural styleGothic RevivalLocationHamburg, GermanyCoordinates53°32′36″N 9°59′31″E / 53.54333°N 9.99194°E / 53.54333; 9.99194Construction started1883Completed1927Opened1888OwnerFree and Hanseatic City of HamburgDimensionsOther dimensions1,500 m × 250 mTechnical detailsMaterialred brickSize26 ha (64 acres)Floor area6...

Bahasa Valencia valencià Pengucapanvalensiˈa atau balensiˈaDituturkan diSpanyolWilayahValencia, Murcia (Carche) Lihat pula distribusi geografis KatalanEtnisSuku ValenciaPenutur2,4 juta (2004)[1]Rumpun bahasaIndo-Eropa ItalikRomanBaratGallo-Roman[2]Oksitan-Roman[2]KatalaKatala Barat[3]Valencia Bentuk awalKatala Kuno Katala ModernValencia Sistem penulisanOrtografi Katala (Alfabet Latin)Status resmiBahasa resmi diDi Spanyol:  Wilayah Valenci...

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan hanya untuk penjelasan ilmiah, bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Perhatian: Informasi dalam artikel ini bukanlah resep atau nasihat medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Priapus, ia tidak senang dengan ereksinya yang terlalu lama. ...

最上 もがみ1935年試航中的最上號完成主炮換裝后的最上級視圖概觀艦種輕巡洋艦(后改装为重巡洋艦)艦級最上级(1號艦)製造廠吳工廠動工昭和六年(1931年)10月27日下水昭和九年(1934年)3月14日服役昭和十年(1935年)7月28日結局昭和十九年(1944年)10月25日自沉技术数据標準排水量11,929噸(主炮換裝后12,400噸,航空改裝后12,200噸)全長200.6米全寬18.22米(主炮換裝后20.51

1977 studio album by Queen News of the WorldStudio album by QueenReleased28 October 1977Recorded6 July – 16 September 1977StudioSarm (East London)Wessex Sound, LondonGenre Hard rock arena rock Length39:10LabelEMIElektraProducerQueenMike StoneQueen chronology A Day at the Races(1976) News of the World(1977) Jazz(1978) Alternative coverCover sold in Korean stores Singles from News of the World We Are the Champions / We Will Rock YouReleased: 7 October 1977 Spread Your WingsReleased: 10 Fe...

Tao TsuchiyaTsuchiya di 2016Nama asal土屋 太鳳Lahir31 Desember 1995 (umur 27)Tokyo, JepangPekerjaanAktris, Model, PenariTahun aktif2005–sekarangAgenSony Music ArtistsDikenal atas Rurouni Kenshin: Kyoto Inferno Mare Tinggi155 m (508 ft 6+1⁄2 in) Tao Tsuchiya (土屋 太鳳code: ja is deprecated , Tsuchiya Tao, lahir 3 Februari 1995) adalah Aktris film dan televisi Jepang.[1][2] Filmografi Tao di 43rd Queen Elizabeth II Cup Film Tahun Ju...

شلاتين للثروة المعدنيةالشعارمعلومات عامةالجنسية  مصرالتأسيس 2012 (منذ 11 سنة)النوع شركة مساهمة حكوميةالمقر الرئيسي القاهرة،  مصرموقع الويب https://smrc.com.eg/المنظومة الاقتصاديةالنشاط التعدينمناطق الخدمة مصرأهم الشخصياتالمالك القائمة .. الهيئة المصرية العامة للثروة المعدن�...

第4飛行師團 (日本陸軍)存在時期1942年(昭和17年)4月15日-1945年(昭和20年)國家或地區大日本帝国規模师团 第4飛行师团(だいよんひこうしだん)是日本陸軍的航空师团之一。前身は为1942年創設的第4飛行集团,同年改称为第4飛行师团。 沿革 第4飛行集团于1942年2月组建,负责滿洲的防衛。同年4月,改称第4飛行师团。 太平洋战争末期转移至菲律宾,其所保有的飞机几乎�...

Resolution procedure of the EU banking union This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2023) Regulation 806/2014European Union regulationTitleEstablishing uniform rules and a uniform procedure for the resolution of credit institutions and certain investment firms in the framework of a Single Resolution Mechanism and a Single Resolution FundApplicabilityAll EU members. SRM provisions however only apply to...

Metropolitan area of Jakarta and surrounded city, Indonesia 6°10′30″S 106°49′43″E / 6.17500°S 106.82861°E / -6.17500; 106.82861 Metropolitan area in IndonesiaJakarta metropolitan area JabodetabekJabodetabekpunjurMetropolitan areaFrom top, left to right: Skyview of Jakarta at dawn, Bogor city and Mount Salak, Depok skyline, Alam Sutera CBD in South Tangerang, Aerial view of Tangerang, Bekasi skyline at night and Landsat satellite view of Greater Jakarta duri...

6 SenseAlbum studio karya DygtaDirilis10 Mei 2012GenrePopLabelNagaswaraKronologi Dygta 5 Hati Untuk Cinta (2009)5 Hati Untuk Cinta2009 6 Sense (2012) Lucky Seven (2015)Lucky Seven2015 6 Sense adalah sebuah album musik keenam dari grup musik asal Bandung, Dygta. Dirilis pada tahun 2012 dengan lagu Ku Merindukanmu sebagai lagu utama di album ini. Sementara lagu Cinta Tanpa Kata belum diketahui apakah di release atau unreleased video klipnya. Daftar lagu Satu Satunya Ku Merindukanmu Sheila S...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Nothing Can Stop the Juggernaut! – news · newspapers · books · scholar · JSTOR (December 2008) (Learn how and when to remove this template message) Nothing Can Stop the Juggernaut!Cover of The Amazing Spider-Man vol. 1, 229 (Jun, 1982)Art by John Romita Jr...

Women's teamat the Games of the IX OlympiadVenueOlympic StadiumCompetitors60 from 5 nationsMedalists  Netherlands Estella Agsteribbe, Jacomina van den Berg, Alida van den Bos, Petronella Burgerhof, Elka de Levie, Helena Nordheim, Ans Polak, Petronella van Randwijk, Hendrika van Rumt, Jud Simons, Jacoba Stelma, Anna van der Vegt  Italy Bianca Ambrosetti, Lavinia Gianoni, Luigina Giavotti, Virginia Giorgi, Germana Malabarba, Carla Marangoni, Luigina Perversi, Diana Pissavini...

Free software media player KodiKodi 17.6 Home ScreenDeveloper(s)Kodi FoundationInitial release2002 (as Xbox Media Player), 2003[1] (as Xbox Media Center)Stable release(s)20.2[2]  / 2 July 2023; 5 months ago (2 July 2023) Repositorygithub.com/xbmc/xbmc Written inC++ core, with C++ (binary) or Python scripts as add-ons (plug-in extensions) from third-party developers[citation needed]Operating systemWindows 10 and later, macOS, Android, iOS, iPadOS, tvOS...

British TV series or programme ParanoidGenreCrime dramaThrillerWritten byBill GallagherDirected byMark TonderaiKenny GlennanJohn DuthieStarringIndira VarmaRobert GlenisterDino FetscherNeil StukeLesley SharpChristiane PaulMichael MaloneyKevin DoylePolly WalkerCountry of originUnited KingdomOriginal languageEnglishNo. of series1No. of episodes8 (list of episodes)ProductionProducersBill GallagherNicola ShindlerTom SherryRunning time45 minutesProduction companyRed Production CompanyOriginal ...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Albert BanduraLahir(1925-12-04)4 Desember 1925Mundare, Alberta, KanadaMeninggal26 Juli 2021(2021-07-26) (umur 95)Stanford, California, Amerik...

«Сердика II» Софійське метроМ2 Загальні даніТип односклепіннаГлибина закладення 24 мПроєктна назва пл. «Ленін», св. «Неділя»ПлатформиКількість 2Тип береговіФорма пряміДовжина 105 мШирина 6,05 мБудівництвоДата відкриття 31 серпня 2012Архітектор(и) Кр. АндреевБудівельник(и) Doğu�...

1992 studio album by NenaBongo GirlStudio album by NenaReleased28 September 1992 (1992-09-28)StudioSpliff Studio, BerlinLength52:20LanguageGermanEnglishLabelEpicProducerNenaJürgen DehmelNena chronology Nena die Band(1991) Bongo Girl(1992) Und alles dreht sich(1994) Nena solo chronology Wunder gescheh'n(1989) Bongo Girl(1992) Und alles dreht sich(1994) Singles from Bongo Girl Manchmal ist ein Tag ein ganzes LebenReleased: 1992 ConversationReleased: 14 December 1992 Ohne...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Firozpur City railway station – news · newspapers · books · scholar · JSTOR (January 2019) This a...

Asesinato de Luis Donaldo Colosio Murrieta Mural representando el asesinato de ColosioLugar Lomas Taurinas, Tijuana, Baja California, MéxicoFecha 23 de marzo de 1994Tipo de ataque MagnicidioArma(s) RevolverMuertos Luis Donaldo Colosio MurrietaPerpetrador(es) Mario Aburto MartínezCondenado(s) Mario Aburto Martínez a 45 años de prisión[editar datos en Wikidata] El asesinato de Luis Donaldo Colosio Murrieta, candidato a la Presidencia de la República por el Partido Revolucionario...