Arithmetical hierarchy

An illustration of how the levels of the hierarchy interact and where some basic set categories lie within it.

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).[1]

The arithmetical hierarchy is important in computability theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic.

The Tarski–Kuratowski algorithm provides an easy way to get an upper bound on the classifications assigned to a formula and the set it defines.

The hyperarithmetical hierarchy and the analytical hierarchy extend the arithmetical hierarchy to classify additional formulas and sets.

The arithmetical hierarchy of formulas

The arithmetical hierarchy assigns classifications to the formulas in the language of first-order arithmetic. The classifications are denoted and for natural numbers n (including 0). The Greek letters here are lightface symbols, which indicates that the formulas do not contain set parameters.[clarification needed]

If a formula is logically equivalent to a formula having no unbounded quantifiers, i.e. in which all quantifiers are bounded quantifiers then is assigned the classifications and .

The classifications and are defined inductively for every natural number n using the following rules:

  • If is logically equivalent to a formula of the form , where is , then is assigned the classification .
  • If is logically equivalent to a formula of the form , where is , then is assigned the classification .

A formula is equivalent to a formula that begins with some existential quantifiers and alternates times between series of existential and universal quantifiers; while a formula is equivalent to a formula that begins with some universal quantifiers and alternates analogously.

Because every first-order formula has a prenex normal form, every formula is assigned at least one classification. Because redundant quantifiers can be added to any formula, once a formula is assigned the classification or it will be assigned the classifications and for every m > n. The only relevant classification assigned to a formula is thus the one with the least n; all the other classifications can be determined from it.

The arithmetical hierarchy of sets of natural numbers

A set X of natural numbers is defined by a formula φ in the language of Peano arithmetic (the first-order language with symbols "0" for zero, "S" for the successor function, "+" for addition, "×" for multiplication, and "=" for equality), if the elements of X are exactly the numbers that satisfy φ. That is, for all natural numbers n,

where is the numeral in the language of arithmetic corresponding to . A set is definable in first-order arithmetic if it is defined by some formula in the language of Peano arithmetic.

Each set X of natural numbers that is definable in first-order arithmetic is assigned classifications of the form , , and , where is a natural number, as follows. If X is definable by a formula then X is assigned the classification . If X is definable by a formula then X is assigned the classification . If X is both and then is assigned the additional classification .

Note that it rarely makes sense to speak of formulas; the first quantifier of a formula is either existential or universal. So a set is not necessarily defined by a formula in the sense of a formula that is both and ; rather, there are both and formulas that define the set. For example, the set of odd natural numbers is definable by either or .

A parallel definition is used to define the arithmetical hierarchy on finite Cartesian powers of the set of natural numbers. Instead of formulas with one free variable, formulas with k free first-order variables are used to define the arithmetical hierarchy on sets of k-tuples of natural numbers. These are in fact related by the use of a pairing function.

Meaning of the notation

The following meanings can be attached to the notation for the arithmetical hierarchy on formulas.

The subscript in the symbols and indicates the number of alternations of blocks of universal and existential first-order quantifiers that are used in a formula. Moreover, the outermost block is existential in formulas and universal in formulas.

The superscript in the symbols , , and indicates the type of the objects being quantified over. Type 0 objects are natural numbers, and objects of type are functions that map the set of objects of type to the natural numbers. Quantification over higher type objects, such as functions from natural numbers to natural numbers, is described by a superscript greater than 0, as in the analytical hierarchy. The superscript 0 indicates quantifiers over numbers, the superscript 1 would indicate quantification over functions from numbers to numbers (type 1 objects), the superscript 2 would correspond to quantification over functions that take a type 1 object and return a number, and so on.

Examples

  • The sets of numbers are those definable by a formula of the form where has only bounded quantifiers. These are exactly the recursively enumerable sets.
  • The set of natural numbers that are indices for Turing machines that compute total functions is . Intuitively, an index falls into this set if and only if for every "there is an such that the Turing machine with index halts on input after steps". A complete proof would show that the property displayed in quotes in the previous sentence is definable in the language of Peano arithmetic by a formula.
  • Every subset of Baire space or Cantor space is an open set in the usual topology on the space. Moreover, for any such set there is a computable enumeration of Gödel numbers of basic open sets whose union is the original set. For this reason, sets are sometimes called effectively open. Similarly, every set is closed and the sets are sometimes called effectively closed.
  • Every arithmetical subset of Cantor space or Baire space is a Borel set. The lightface Borel hierarchy extends the arithmetical hierarchy to include additional Borel sets. For example, every subset of Cantor or Baire space is a set, that is, a set that equals the intersection of countably many open sets. Moreover, each of these open sets is and the list of Gödel numbers of these open sets has a computable enumeration. If is a formula with a free set variable and free number variables then the set is the intersection of the sets of the form as ranges over the set of natural numbers.
  • The formulas can be checked by going over all cases one by one, which is possible because all their quantifiers are bounded. The time for this is polynomial in their arguments (e.g. polynomial in for ); thus their corresponding decision problems are included in E (as is exponential in its number of bits). This no longer holds under alternative definitions of that allow the use of primitive recursive functions, as now the quantifiers may be bounded by any primitive recursive function of the arguments.
  • The formulas under an alternative definition, that allows the use of primitive recursive functions with bounded quantifiers, correspond to sets of natural numbers of the form for a primitive recursive function . This is because allowing bounded quantifier adds nothing to the definition: for a primitive recursive , is the same as , and is the same as ; with course-of-values recursion each of these can be defined by a single primitive recursive function.

Relativized arithmetical hierarchies

Just as we can define what it means for a set X to be recursive relative to another set Y by allowing the computation defining X to consult Y as an oracle we can extend this notion to the whole arithmetic hierarchy and define what it means for X to be , or in Y, denoted respectively , and . To do so, fix a set of natural numbers Y and add a predicate for membership of Y to the language of Peano arithmetic. We then say that X is in if it is defined by a formula in this expanded language. In other words, X is if it is defined by a formula allowed to ask questions about membership of Y. Alternatively one can view the sets as those sets that can be built starting with sets recursive in Y and alternately taking unions and intersections of these sets up to n times.

For example, let Y be a set of natural numbers. Let X be the set of numbers divisible by an element of Y. Then X is defined by the formula so X is in (actually it is in as well, since we could bound both quantifiers by n).

Arithmetic reducibility and degrees

Arithmetical reducibility is an intermediate notion between Turing reducibility and hyperarithmetic reducibility.

A set is arithmetical (also arithmetic and arithmetically definable) if it is defined by some formula in the language of Peano arithmetic. Equivalently X is arithmetical if X is or for some natural number n. A set X is arithmetical in a set Y, denoted , if X is definable as some formula in the language of Peano arithmetic extended by a predicate for membership of Y. Equivalently, X is arithmetical in Y if X is in or for some natural number n. A synonym for is: X is arithmetically reducible to Y.

The relation is reflexive and transitive, and thus the relation defined by the rule

is an equivalence relation. The equivalence classes of this relation are called the arithmetic degrees; they are partially ordered under .

The arithmetical hierarchy of subsets of Cantor and Baire space

The Cantor space, denoted , is the set of all infinite sequences of 0s and 1s; the Baire space, denoted or , is the set of all infinite sequences of natural numbers. Note that elements of the Cantor space can be identified with sets of natural numbers and elements of the Baire space with functions from natural numbers to natural numbers.

The ordinary axiomatization of second-order arithmetic uses a set-based language in which the set quantifiers can naturally be viewed as quantifying over Cantor space. A subset of Cantor space is assigned the classification if it is definable by a formula. The set is assigned the classification if it is definable by a formula. If the set is both and then it is given the additional classification . For example, let be the set of all infinite binary strings that aren't all 0 (or equivalently the set of all non-empty sets of natural numbers). As we see that is defined by a formula and hence is a set.

Note that while both the elements of the Cantor space (regarded as sets of natural numbers) and subsets of the Cantor space are classified in arithmetic hierarchies, these are not the same hierarchy. In fact the relationship between the two hierarchies is interesting and non-trivial. For instance the elements of the Cantor space are not (in general) the same as the elements of the Cantor space so that is a subset of the Cantor space. However, many interesting results relate the two hierarchies.

There are two ways that a subset of Baire space can be classified in the arithmetical hierarchy.

  • A subset of Baire space has a corresponding subset of Cantor space under the map that takes each function from to to the characteristic function of its graph. A subset of Baire space is given the classification , , or if and only if the corresponding subset of Cantor space has the same classification.
  • An equivalent definition of the arithmetical hierarchy on Baire space is given by defining the arithmetical hierarchy of formulas using a functional version of second-order arithmetic; then the arithmetical hierarchy on subsets of Cantor space can be defined from the hierarchy on Baire space. This alternate definition gives exactly the same classifications as the first definition.

A parallel definition is used to define the arithmetical hierarchy on finite Cartesian powers of Baire space or Cantor space, using formulas with several free variables. The arithmetical hierarchy can be defined on any effective Polish space; the definition is particularly simple for Cantor space and Baire space because they fit with the language of ordinary second-order arithmetic.

Note that we can also define the arithmetic hierarchy of subsets of the Cantor and Baire spaces relative to some set of natural numbers. In fact boldface is just the union of for all sets of natural numbers Y. Note that the boldface hierarchy is just the standard hierarchy of Borel sets.

Extensions and variations

It is possible to define the arithmetical hierarchy of formulas using a language extended with a function symbol for each primitive recursive function. This variation slightly changes the classification of , since using primitive recursive functions in first-order Peano arithmetic requires, in general, an unbounded existential quantifier, and thus some sets that are in by this definition are strictly in by the definition given in the beginning of this article. The class and thus all higher classes in the hierarchy remain unaffected.

A more semantic variation of the hierarchy can be defined on all finitary relations on the natural numbers; the following definition is used. Every computable relation is defined to be . The classifications and are defined inductively with the following rules.

  • If the relation is then the relation is defined to be
  • If the relation is then the relation is defined to be

This variation slightly changes the classification of some sets. In particular, , as a class of sets (definable by the relations in the class), is identical to as the latter was formerly defined. It can be extended to cover finitary relations on the natural numbers, Baire space, and Cantor space.

Properties

The following properties hold for the arithmetical hierarchy of sets of natural numbers and the arithmetical hierarchy of subsets of Cantor or Baire space.

  • The collections and are closed under finite unions and finite intersections of their respective elements.
  • A set is if and only if its complement is . A set is if and only if the set is both and , in which case its complement will also be .
  • The inclusions and hold for all . Thus the hierarchy does not collapse. This is a direct consequence of Post's theorem.
  • The inclusions , and hold for .
  • For example, for a universal Turing machine T, the set of pairs (n,m) such that T halts on n but not on m, is in (being computable with an oracle to the halting problem) but not in .
  • . The inclusion is strict by the definition given in this article, but an identity with holds under one of the variations of the definition given above.

Relation to Turing machines

Computable sets

If S is a Turing computable set, then both S and its complement are recursively enumerable (if T is a Turing machine giving 1 for inputs in S and 0 otherwise, we may build a Turing machine halting only on the former, and another halting only on the latter).

By Post's theorem, both S and its complement are in . This means that S is both in and in , and hence it is in .

Similarly, for every set S in , both S and its complement are in and are therefore (by Post's theorem) recursively enumerable by some Turing machines T1 and T2, respectively. For every number n, exactly one of these halts. We may therefore construct a Turing machine T that alternates between T1 and T2, halting and returning 1 when the former halts or halting and returning 0 when the latter halts. Thus T halts on every n and returns whether it is in S; so S is computable.

Summary of main results

The Turing computable sets of natural numbers are exactly the sets at level of the arithmetical hierarchy. The recursively enumerable sets are exactly the sets at level .

No oracle machine is capable of solving its own halting problem (a variation of Turing's proof applies). The halting problem for a oracle in fact sits in .

Post's theorem establishes a close connection between the arithmetical hierarchy of sets of natural numbers and the Turing degrees. In particular, it establishes the following facts for all n ≥ 1:

  • The set (the nth Turing jump of the empty set) is many-one complete in .
  • The set is many-one complete in .
  • The set is Turing complete in .

The polynomial hierarchy is a "feasible resource-bounded" version of the arithmetical hierarchy in which polynomial length bounds are placed on the numbers involved (or, equivalently, polynomial time bounds are placed on the Turing machines involved). It gives a finer classification of some sets of natural numbers that are at level of the arithmetical hierarchy.

Relation to other hierarchies

Lightface Boldface
Σ0
0
= Π0
0
= Δ0
0
(sometimes the same as Δ0
1
)
Σ0
0
= Π0
0
= Δ0
0
(if defined)
Δ0
1
= recursive
Δ0
1
= clopen
Σ0
1
= recursively enumerable
Π0
1
= co-recursively enumerable
Σ0
1
= G = open
Π0
1
= F = closed
Δ0
2
Δ0
2
Σ0
2
Π0
2
Σ0
2
= Fσ
Π0
2
= Gδ
Δ0
3
Δ0
3
Σ0
3
Π0
3
Σ0
3
= Gδσ
Π0
3
= Fσδ
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= arithmetical
Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= boldface arithmetical
Δ0
α
recursive)
Δ0
α
countable)
Σ0
α
Π0
α
Σ0
α
Π0
α
Σ0
ωCK
1
= Π0
ωCK
1
= Δ0
ωCK
1
= Δ1
1
= hyperarithmetical
Σ0
ω1
= Π0
ω1
= Δ0
ω1
= Δ1
1
= B = Borel
Σ1
1
= lightface analytic
Π1
1
= lightface coanalytic
Σ1
1
= A = analytic
Π1
1
= CA = coanalytic
Δ1
2
Δ1
2
Σ1
2
Π1
2
Σ1
2
= PCA
Π1
2
= CPCA
Δ1
3
Δ1
3
Σ1
3
Π1
3
Σ1
3
= PCPCA
Π1
3
= CPCPCA
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= analytical
Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= P = projective


See also

References

  1. ^ P. G. Hinman, Recursion-Theoretic Hierarchies (p.89), Perspectives in Logic, 1978. Springer-Verlag Berlin Heidelberg, ISBN 3-540-07904-1.
  • Japaridze, Giorgie (1994), "The logic of arithmetical hierarchy", Annals of Pure and Applied Logic, 66 (2): 89–112, doi:10.1016/0168-0072(94)90063-9, Zbl 0804.03045.
  • Moschovakis, Yiannis N. (1980), Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North Holland, ISBN 0-444-70199-0, Zbl 0433.03025.
  • Nies, André (2009), Computability and randomness, Oxford Logic Guides, vol. 51, Oxford: Oxford University Press, ISBN 978-0-19-923076-1, Zbl 1169.03034.
  • Rogers, H. Jr. (1967), Theory of recursive functions and effective computability, Maidenhead: McGraw-Hill, Zbl 0183.01401.

Read other articles:

Azumanga DaiohGambar Sampul manga volume pertama tankōbon , menampilkan dari kiri ke kanan: Sakaki, Chiyo, Tomo, Yomi, dan Osakaあずまんが大王(Azumanga Daiō)GenrePenggalan kehidupan[1]komedi surealis[2] MangaPengarangKiyohiko AzumaPenerbitMediaWorks,Shogakukan (rilis ulang)Penerbit bahasa InggrisNA ADV Manga (mantan)UK Yen PressMajalahDengeki DaiohDemografiShōnenTerbitFebruari 1999 – Mei 2002Volume4 (Daftar volume) Animasi web orisinalAzumanga Web Daiohあずまん...

French anarchist (1867–1901) Fernand Pelloutier. Fernand-Léonce-Émile Pelloutier (1 October 1867, in Paris – 13 March 1901, in Sèvres) was a French anarchist and syndicalist. He was the leader of the Bourses du Travail,[1] a major French trade union, from 1895 until his death in 1901. He was succeeded by Yvetot. In 1902, the Bourses du Travail merged with the Confédération Générale du Travail. Pelloutier's theories were exceptionally important to the Revolutionary Syndicali...

التقسيم الإداري الجزائري قبل سنة 2021 جزء من سلسلة مقالات سياسة الجزائر الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس (قائمة) عبد المجيد تبون رئيس الحكومة (قائمة) عبد العزيز جراد السلطة التشريعية البرلمان مجلس الأمّة المجلس الشعبي الوطني السلطة القضائية السلطة القض�...

Acantilado en la Toscana, mar Mediterraneo. Bonifacio II (788 - 847) fue marqués de Toscana, duque de Lucca entre los años 823 y 833, y protector de Córcega entre 828 y 833. Proveniente de una familia de origen bávaro, fue hijo y sucesor de Bonifacio I. En el año 823, tras la muerte de su padre, heredó los títulos de duque de Lucca, protector de Córcega y conde de Pisa, Pistoia, Volterra y Luni.[1]​ A partir de 828 fue nombrado marqués de Toscana, y ese mismo año dirigió una ...

Опис файлу Опис Логотип ФК «Тенсунг» Джерело en:File:Tensung FC Logo.png Час створення Невідомо Автор зображення ФК «Тенсунг» Ліцензія див. нижче Обґрунтування добропорядного використання для статті «Тенсунг (футбольний клуб)» [?] Мета використання Для ілюстрації статті. До�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) بني هاجر الإحداثيات 25°14′12″N 51°24′19″E / 25.2367°N 51.4054°E / 25.2367; 51.4054  تقسيم إداري  البلد قطر  تعديل مصدري - تعديل   هي إحدى مناطق قطر، وتقع ضمن

PausPaulus IVAwal masa kepausan23 Mei 1555Akhir masa kepausan18 Agustus 1559PendahuluMarselus IIPenerusPius IVInformasi pribadiNama lahirGiovanni Pietro CarafaLahir28 Juni 1476Capriglia Irpina, ItaliaMeninggal18 Agustus 1559Roma, Italia Paus Paulus IV (28 Juni 1476-18 Agustus 1559) adalah Paus yang menjabat sejak 23 Mei 1555 sampai 18 Agustus 1559. Nama aslinya adalah Giovanni Pietro Carafa. Sebelum menjabat sebagai Paus, Paus Paulus IV merupakan salah satu pendiri Oratori tentang Cinta Ilahi...

Dutch footballer Nol Heijerman Personal informationFull name Arnoldus HeijermanDate of birth (1940-10-10)10 October 1940Place of birth Rotterdam, NetherlandsDate of death 23 January 2015(2015-01-23) (aged 74)Place of death Rotterdam, NetherlandsPosition(s) Right wingerYouth career1950–1960 RFC RotterdamSenior career*Years Team Apps (Gls)1960–1963 HVC Amersfoort 1963–1967 Xerxes 1967–1975 Sparta 223 (64)1975–1976 Excelsior 10 (1) *Club domestic league appearances and goals Arnol...

2002 novel by Lloyd Rose For other novels with the same title, see Camera obscura (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Camera Obscura novel – new...

セモヴェンテ da 20/70 クアドルプロ 種類 自走式対空砲原開発国 イタリア王国運用史配備先 イタリア王国 イタリア社会共和国 ドイツ国開発史開発者 アンサルド開発期間 1942年製造業者 フィアット諸元重量 14.7t全長 4.92m全幅 2.20m全高 2.55m要員数 3名(車長、銃手/装填手2名) 装甲 前面装甲50mm、側面装甲42mm主兵装 20mm スコッティ-イゾッタ・フラスキーニ 20/70 機関砲、4門�...

American mechanical engineer and inventor George H. CorlissBorn(1817-06-02)June 2, 1817Easton, New YorkDiedFebruary 21, 1888(1888-02-21) (aged 70)Providence, Rhode IslandResting placeSwan Point CemeteryOccupationMechanical engineerEmployerCorliss Steam Engine CompanyKnown forImprovements to steam engineSignature George Henry Corliss (June 2, 1817 – February 21, 1888) was an American mechanical engineer and inventor, who developed the Corliss steam engine, which was a great imp...

Mauser 98k Тип магазинная винтовка/карабин Страна  Нацистская Германия История службы Годы эксплуатации 1935 — по настоящее время На вооружении Вермахт, войска СС Бельгия, Югославия, Вьетнам, Иран, Израиль, СССР (как трофей) Войны и конфликты Вторая мировая война, Вьетнамска�...

Ayres Natural Bridge over LaPrele Creek Ayres Natural Bridge Park is a county park in Converse County, Wyoming in the United States. It occupies 150 acres (0.6 km²) between the towns Glenrock and Douglas about 6 kilometers south of Interstate 25 exit 151. The park's name is derived from the rock formation of the same name. Ayres is the surname of the family who donated the land which had been part of their ranch. Over the course of millions of years, a bend in LaPrele Creek (originally ...

Square in Dublin, Ireland Ormond SquareOrmond Square in 2012Native nameCearnóg Urumhan (Irish)NamesakeJames Butler, first Duke of OrmondeLocationDublin, IrelandPostal codeD07Coordinates53°20′47″N 6°16′14″W / 53.3463°N 6.2705°W / 53.3463; -6.2705 Ormond Square (Irish: Cearnóg Urumhan)[1] is a square on the northside of Dublin city. History Ormond Square sits on the site of the former Ormond Market. Along with Ormond Quay, the square is named a...

Kibbutz in southern Israel Place in Southern, IsraelRevadim רבדיםرفاديمRevadimShow map of Ashkelon region of IsraelRevadimShow map of IsraelCoordinates: 31°46′25″N 34°49′1″E / 31.77361°N 34.81694°E / 31.77361; 34.81694CountryIsraelDistrictSouthernCouncilYoavAffiliationKibbutz MovementFounded14 February 1947 (original)28 November 1948 (current)Founded byHashomer Hatzair members (original)Bulgarian Jews (current)Population (2021)825[1]...

Military branch involved in naval warfare Naval and Naval Force redirect here. For other uses of Naval, see Naval (disambiguation). For other uses of Navy, see Navy (disambiguation). Naval power redirects here. For a country with a strong navy, see Maritime power. The Spanish Armada fighting the English navy at the Battle of Gravelines in 1588 British and Danish navies in the line of battle at the Battle of Copenhagen (1801) A flotilla from the Indian Navy's Western Fleet escorts the aircraft...

Hermandad de Penitencia del Santísimo Cristo del Amparo El Cristo del AmparoLocalizaciónPaís  EspañaLocalidad ZamoraSede canónica iglesia de San Claudio de OlivaresDatos generalesFundación 1956Imágenes 1Hermanos 150Túnica Capa parda alistanaProcesionesDía y hora Noche del Miércoles SantoSitio web oficial[editar datos en Wikidata] Hermandad Penitencial del Santísimo Cristo del Amparo, conocida popularmente como las Capas Pardas, es una cofradía católica de la c...

Belgian footballer (born 1995) Divock Origi Origi playing for Liverpool in 2021Personal informationFull name Divock Okoth Origi[1]Date of birth (1995-04-18) 18 April 1995 (age 28)[2]Place of birth Ostend, BelgiumHeight 1.85 m (6 ft 1 in)[3][4]Position(s) Striker, winger[5][6]Team informationCurrent team Nottingham Forest(on loan from AC Milan)Number 27Youth career2001–2010 Genk2010–2012 LilleSenior career*Years Team Apps ...

2015 studio album by Big SeanDark Sky ParadiseStudio album by Big SeanReleasedFebruary 24, 2015 (2015-02-24)Studio Doe Record Plant Yolo Estate (Los Angeles) Glenwood Place (Burbank) No Name (Malibu) Orange Room (Atlanta) S.O.T.A. (Toronto) GenreHip hopLength49:57Label GOOD Def Jam Producer Amaire Johnson Da Internz DJ Dahi DJ Mustard Jay John Henry Kanye West Key Wane L&F Mike Dean Mike Will Made It RobGotBeats T-Minus Vinylz Big Sean chronology Hall of Fame(2013) ...

Stacy Roest Nazionalità  Canada Altezza 178 cm Peso 86 kg Hockey su ghiaccio Ruolo Centro Tiro Destro Termine carriera 2012 Carriera Periodo Squadra PG G A Pt Giovanili 1990-1995  Medicine Hat Tigers 324 175 291 466 Squadre di club0 1995-1999  Adirondack R. Wings 249 78 141 219 1998-2000  Detroit Red Wings 101 11 17 28 2000-2002  Minnesota Wild 134 17 31 48 2002-2003  G. Rapids Griffins 85 34 54 88 2002-2003 →  Detroit Red Wings 2 0 0 0 2003-2012  Ra...