Semantic theory of truth

A semantic theory of truth is a theory of truth in the philosophy of language which holds that truth is a property of sentences.[1]

Origin

The semantic conception of truth, which is related in different ways to both the correspondence and deflationary conceptions, is due to work by Polish logician Alfred Tarski. Tarski, in "On the Concept of Truth in Formal Languages" (1935), attempted to formulate a new theory of truth in order to resolve the liar paradox. In the course of this he made several metamathematical discoveries, most notably Tarski's undefinability theorem using the same formal technique Kurt Gödel used in his incompleteness theorems. Roughly, this states that a truth-predicate satisfying Convention T for the sentences of a given language cannot be defined within that language.

Tarski's theory of truth

To formulate linguistic theories[2] without semantic paradoxes such as the liar paradox, it is generally necessary to distinguish the language that one is talking about (the object language) from the language that one is using to do the talking (the metalanguage). In the following, quoted text is use of the object language, while unquoted text is use of the metalanguage; a quoted sentence (such as "P") is always the metalanguage's name for a sentence, such that this name is simply the sentence P rendered in the object language. In this way, the metalanguage can be used to talk about the object language; Tarski's theory of truth (Alfred Tarski 1935) demanded that the object language be contained in the metalanguage.

Tarski's material adequacy condition, also known as Convention T, holds that any viable theory of truth must entail, for every sentence "P", a sentence of the following form (known as "form (T)"):

(1) "P" is true if, and only if, P.

For example,

(2) 'snow is white' is true if and only if snow is white.

These sentences (1 and 2, etc.) have come to be called the "T-sentences". The reason they look trivial is that the object language and the metalanguage are both English; here is an example where the object language is German and the metalanguage is English:

(3) 'Schnee ist weiß' is true if and only if snow is white.

It is important to note that as Tarski originally formulated it, this theory applies only to formal languages, cf. also semantics of first-order logic. He gave a number of reasons for not extending his theory to natural languages, including the problem that there is no systematic way of deciding whether a given sentence of a natural language is well-formed, and that a natural language is closed (that is, it can describe the semantic characteristics of its own elements). But Tarski's approach was extended by Davidson into an approach to theories of meaning for natural languages, which involves treating "truth" as a primitive, rather than a defined, concept. (See truth-conditional semantics.)

Tarski developed the theory to give an inductive definition of truth as follows. (See T-schema)

For a language L containing ¬ ("not"), ∧ ("and"), ∨ ("or"), ∀ ("for all"), and ∃ ("there exists"), Tarski's inductive definition of truth looks like this:

  • (1) A primitive statement "A" is true if, and only if, A.
  • (2) "¬A" is true if, and only if, "A" is not true.
  • (3) "AB" is true if, and only if, "A" is true and "B" is true.
  • (4) "AB" is true if, and only if, "A" is true or "B" is true or ("A" is true and "B" is true).
  • (5) "∀x(Fx)" is true if, and only if, for all objects x, "Fx" is true.
  • (6) "∃x(Fx)" is true if, and only if, there is an object x for which "Fx" is true.

These explain how the truth conditions of complex sentences (built up from connectives and quantifiers) can be reduced to the truth conditions of their constituents. The simplest constituents are atomic sentences. A contemporary semantic definition of truth would define truth for the atomic sentences as follows:

Tarski himself defined truth for atomic sentences in a variant way that does not use any technical terms from semantics, such as the "expressed by" above. This is because he wanted to define these semantic terms in the context of truth. Therefore it would be circular to use one of them in the definition of truth itself. Tarski's semantic conception of truth plays an important role in modern logic and also in contemporary philosophy of language. It is a rather controversial point whether Tarski's semantic theory should be counted either as a correspondence theory or as a deflationary theory.[3]

Kripke's theory of truth

Kripke's theory of truth (Saul Kripke 1975) is based on partial logic (a logic of partially defined truth predicates instead of Tarski's logic of totally defined truth predicates) with the strong Kleene evaluation scheme.[4]

See also

References

  1. ^ Hale, Bob; Wright, Crispin; Miller, Alexander, eds. (18 February 2017). A Companion to the Philosophy of Language. West Sussex, England: John Wiley & Sons. pp. 309–330. doi:10.1111/b.9780631213260.1999.00015.x. ISBN 9780631213260. Retrieved 28 February 2024., p. 326
  2. ^ Parts of section is adapted from Kirkham, 1992.
  3. ^ Kemp, Gary. Quine versus Davidson: Truth, Reference, and Meaning. Oxford, England: Oxford University Press, 2012, p. 110.
  4. ^ Axiomatic Theories of Truth (Stanford Encyclopedia of Philosophy)

Further reading

Read other articles:

Daucus carota Status konservasiRisiko rendahIUCN172210 TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsKladcampanulidsOrdoApialesFamiliApiaceaeSubfamiliApioideaeTribusScandiceaeSubtribusDaucinaeGenusDaucusSpesiesDaucus carota Linnaeus, 1753 lbs Daucus carota, yang nama umumnya termasuk wortel liar, sarang burung, renda uskup, dan renda Ratu Anne (Amerika Utara), adalah putih, tumbuhan berbunga dalam keluarga Apiaceae...

 

 

Air Terjun Hogenakkal Air Terjun Hogenakkal atau Air Terjun Hogenakal (Tamil: ஒகேனக்கல் அருவி, bahasa Kannada: ಹೊಗೆನಕಲ್ ಜಲಪಾತ) adalah air terjun di India Selatan di Sungai Kaveri. Air terjun ini terletak di distrik Dharmapuri di negara bagian Tamil Nadu.[1][2][3][4][5][6][7][8][9] Air terjun ini terletak sekitar 180 km dari Bangalore dan 46 km dari Dharma...

 

 

Katedral KathmanduKatedral Santa Perawan Maria Diangkat ke SurgaKatedral KathmanduLokasiKathmanduNegara   NepalDenominasiGereja Katolik RomaAdministrasiKeuskupanVikariat Apostolik Nepal Katedral Santa Perawan Maria Diangkat ke Surga[1] atau secara singkat disebut Katedral Kathmandu adalah sebuah gereja katedral Katolik yang terletak di kota Kathmandu,[2] ibu kota Nepal .[3] Katedral ini mulanya bernama Gereja Bunda Maria Diangkat Ke Surga yang ditahbiska...

العلاقات اليونانية الكمبودية اليونان كمبوديا   اليونان   كمبوديا تعديل مصدري - تعديل   العلاقات اليونانية الكمبودية هي العلاقات الثنائية التي تجمع بين اليونان وكمبوديا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

 

Springfield-Sangamon, ILGeneral informationLocation9th Street and Adams StreetSpringfield, IllinoisUnited StatesCoordinates39°48′04″N 89°38′32″W / 39.8010°N 89.6423°W / 39.8010; -89.6423Line(s)Norfolk Southern RailwayConnections SMTDConstructionAccessibleYesFuture services Preceding station Amtrak Following station Carlinvilletoward St. Louis Lincoln Service Lincolntoward Chicago Carlinvilletoward Los Angeles or San Antonio Texas Eagle Springfield-Sangamon ...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Questa voce sull'argomento Stagioni delle società calcistiche israeliane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Voce principale: Moadon Kaduregel Hapoel Ramat Gan Giv'atayim. M.K. Hapoel Ramat Gan G.Stagione 2012-2013Sport calcio Squadra Hapoel Ramat Gan Allenatore Freddy David (fino al 28 novembre 2012) Eli Cohen (dal 28 novembre 2012) Ligat ha'Al14º posto, retrocesso Gvia HaMedinaVincitore Toto Cup AlSemifinale Maggiori presenzeCampi...

 

 

American geographer (1911–2006) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gilbert F. White – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this template message) Gilbert F. WhiteBornNovember 26, 1911 (1911-11-26)Chicago, Illinois, U.S.DiedOctober 5, 20...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016) ميلان-سان ريمو 1999 السلسلة كأس العالم لسباق الدراجات على الطريق 1999  [لغات أخرى]‏  التاريخ مارس 20 ع...

Державний комітет телебачення і радіомовлення України (Держкомтелерадіо) Приміщення комітетуЗагальна інформаціяКраїна  УкраїнаДата створення 2003Керівне відомство Кабінет Міністрів УкраїниРічний бюджет 1 964 898 500 ₴[1]Голова Олег НаливайкоПідвідомчі ор...

 

 

Lokasi Milton Keynes Milton Keynesdengarkanⓘ ialah sebuah kota di Inggris, Britania Raya yang berpenduduk sekitar 210.000 jiwa. Kota ini terletak sekitar 80 kilometer di utara London, tak jauh antara Oxford dan Cambridge. Kota ini mulai dibangun pada tahun 1967. Daerah seluas 89 mil² ini menggabungkan kota-kota seperti Bletchey, Wolverton, dan Stony Stratford bersama dengan 15 desa dan pertanian lainnya. Kota ini direncanakan berpenduduk sekitar 320.000 juta pada tahun 2030. Sebagai unsur ...

 

 

FERMIAC, atau Monte Carlo trolley, merupakan peralatan analog yang ditemukan oleh Enrico Fermi untuk menerapkan studi transportasi neutron. FERMIAC, atau Monte Carlo trolley, merupakan komputer analog yang ditemukan oleh ahli fisika Enrico Fermi untuk membantu penerapan studi transportasi neutron. Operasi FERMIAC menggunakan metode Monte Carlo untuk memodelkan transport neutron dalam berbagai jenis sistem nuklir. Dengan diberikan distribusi awal neutron, tujuan proses tersebut adalah mengemba...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Medieval system of dates in Florence This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Florentine calendar – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this message) Not to be confused with the Pisan calendar, which lies exactly one year ahead of the Florentine calenda...

 

 

Music of Cuba General topics Related articles Genres Afro Afro-Cuban jazz Bakosó Bolero (filin) Canción Chachachá Charanga Conga Contradanza (habanera) Criolla Cubatón Danzón Descarga Guajira Guaracha Hip hop Mambo Mozambique Nueva trova Pachanga Pilón Pregón Punto guajiro Rock Rumba (guaguancó, columbia, yambú, batá-rumba, guarapachangueo) Son (montuno) Songo Timba Trova Specific forms Religious music Abakuá Arará Iyesá Makuta Palo Santería Yuka Traditional music Changüí Cor...

American politician Jackson Doshin SayamaMember of the Hawaii House of Representativesfrom the 21st district20th (2020–2022)IncumbentAssumed office November 3, 2020Preceded byCalvin Say Personal detailsBorn1996 or 1997 (age 26–27)Political partyDemocraticResidence(s)St. Louis Heights, Hawaii[1]Alma materNew York University Shanghai Jackson D. Sayama is an American politician who is currently the Hawaii state representative in Hawaii's 21st district...

 

 

Proj. długość 315 km Zbudowano 89,3 km oraz8,6 km (jedna jezdnia) Województwa łódzkie,mazowieckie,lubelskie Mapa S12      Odcinki istniejące      Odcinki w budowie      Odcinki planowane Zdjęcie Most im. Jana Pawła II w Puławach w ciągu drogi S12 Skrócony przebieg trasy Legenda w użyciu   projekt, budowa, konieczność modernizacji węzeł drogowy typu WA węzeł drogowy typu WB skrzyżowanie rondo p...

 

 

NGC 4216 إن جي سي 4216 (وسط)صورة بواسطة تلسكوب 24 بوصة. ائتمان: آدم بلاوك/مرصد جبل ليمون/ جامعة أريزونا مراقبة البيانات (حقبة (فلك) حقبة) جزء من عنقود العذراء المجري  الكوكبة العذراء رمز الفهرس NGC 4216 (الفهرس العام الجديد)IRAS 12133+1325 (IRAS)UGC 7284 (فهرس أوبسالا العام)PGC 39246 (فهرس المجرات الرئي...

Blackpool Entidad subnacional Torre de Blackpool sobre el paseo marítimo Escudo BlackpoolLocalización de Blackpool en Inglaterra BlackpoolLocalización de Blackpool en LancashireCoordenadas 53°49′00″N 3°03′00″O / 53.816666666667, -3.05Entidad Villa • País  Reino Unido • Nación constitutiva Inglaterra Inglaterra • Región Noroeste de Inglaterra • Condado LancashireAlcalde Paul Maynard (C)Superficie   • Total 3...

 

 

Ashok Leyland LimitedAshok Leyland's headquarters in Chennai, IndiaJenisPublikKode emiten BSE: 500477 NSE: ASHOKLEY ISININE208A01029IndustriOtomotifDidirikan7 September 1948; 75 tahun lalu (1948-09-07)KantorpusatChennai, Tamil Nadu, IndiaWilayah operasiDuniaPendapatan ₹22.059 crore (US$3,1 miliar) (2020)[1]Laba operasi ₹2.537 crore (US$360 juta) (2020)[1]Laba bersih ₹456 crore (US$64 juta) (2020)[1]Total aset ₹38.126 crore (US$5,3 ...