Shift operator

In mathematics, and in particular functional analysis, the shift operator, also known as the translation operator, is an operator that takes a function xf(x) to its translation xf(x + a).[1] In time series analysis, the shift operator is called the lag operator.

Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution.[2] Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. The notion of triangulated category is a categorified analogue of the shift operator.

Definition

Functions of a real variable

The shift operator T t (where ) takes a function f on to its translation ft,

A practical operational calculus representation of the linear operator T t in terms of the plain derivative was introduced by Lagrange,

which may be interpreted operationally through its formal Taylor expansion in t; and whose action on the monomial xn is evident by the binomial theorem, and hence on all series in x, and so all functions f(x) as above.[3] This, then, is a formal encoding of the Taylor expansion in Heaviside's calculus.

The operator thus provides the prototype[4] for Lie's celebrated advective flow for Abelian groups,

where the canonical coordinates h (Abel functions) are defined such that

For example, it easily follows that yields scaling,

hence (parity); likewise, yields[5]

yields

yields

etc.

The initial condition of the flow and the group property completely determine the entire Lie flow, providing a solution to the translation functional equation[6]

Sequences

The left shift operator acts on one-sided infinite sequence of numbers by

and on two-sided infinite sequences by

The right shift operator acts on one-sided infinite sequence of numbers by

and on two-sided infinite sequences by

The right and left shift operators acting on two-sided infinite sequences are called bilateral shifts.

Abelian groups

In general, as illustrated above, if F is a function on an abelian group G, and h is an element of G, the shift operator T g maps F to[6][7]

Properties of the shift operator

The shift operator acting on real- or complex-valued functions or sequences is a linear operator which preserves most of the standard norms which appear in functional analysis. Therefore, it is usually a continuous operator with norm one.

Action on Hilbert spaces

The shift operator acting on two-sided sequences is a unitary operator on The shift operator acting on functions of a real variable is a unitary operator on

In both cases, the (left) shift operator satisfies the following commutation relation with the Fourier transform: where M t is the multiplication operator by exp(itx). Therefore, the spectrum of T t is the unit circle.

The one-sided shift S acting on is a proper isometry with range equal to all vectors which vanish in the first coordinate. The operator S is a compression of T−1, in the sense that where y is the vector in with yi = xi for i ≥ 0 and yi = 0 for i < 0. This observation is at the heart of the construction of many unitary dilations of isometries.

The spectrum of S is the unit disk. The shift S is one example of a Fredholm operator; it has Fredholm index −1.

Generalization

Jean Delsarte introduced the notion of generalized shift operator (also called generalized displacement operator); it was further developed by Boris Levitan.[2][8][9]

A family of operators acting on a space Φ of functions from a set X to is called a family of generalized shift operators if the following properties hold:

  1. Associativity: let Then
  2. There exists e in X such that Le is the identity operator.

In this case, the set X is called a hypergroup.

See also

Notes

  1. ^ Weisstein, Eric W. "Shift Operator". MathWorld.
  2. ^ a b Marchenko, V. A. (2006). "The generalized shift, transformation operators, and inverse problems". Mathematical events of the twentieth century. Berlin: Springer. pp. 145–162. doi:10.1007/3-540-29462-7_8. ISBN 978-3-540-23235-3. MR 2182783.
  3. ^ Jordan, Charles, (1939/1965). Calculus of Finite Differences, (AMS Chelsea Publishing), ISBN 978-0828400336 .
  4. ^ M Hamermesh (1989), Group Theory and Its Application to Physical Problems (Dover Books on Physics), Hamermesh ISBM 978-0486661810, Ch 8-6, pp 294-5, online.
  5. ^ p 75 of Georg Scheffers (1891): Sophus Lie, Vorlesungen Ueber Differentialgleichungen Mit Bekannten Infinitesimalen Transformationen, Teubner, Leipzig, 1891. ISBN 978-3743343078 online
  6. ^ a b Aczel, J (2006), Lectures on Functional Equations and Their Applications (Dover Books on Mathematics, 2006), Ch. 6, ISBN 978-0486445236 .
  7. ^ "A one-parameter continuous group is equivalent to a group of translations". M Hamermesh, ibid.
  8. ^ Levitan, B.M.; Litvinov, G.L. (2001) [1994], "Generalized displacement operators", Encyclopedia of Mathematics, EMS Press
  9. ^ Bredikhina, E.A. (2001) [1994], "Almost-periodic function", Encyclopedia of Mathematics, EMS Press

Bibliography

  • Partington, Jonathan R. (March 15, 2004). Linear Operators and Linear Systems. Cambridge University Press. doi:10.1017/cbo9780511616693. ISBN 978-0-521-83734-7.
  • Marvin Rosenblum and James Rovnyak, Hardy Classes and Operator Theory, (1985) Oxford University Press.

Read other articles:

Beberapa karakter utama dan yang sering muncul dalam Rugrats Rugrats meliputi sejumlah besar karakter: keluarga, teman-teman, kerabat, penduduk kota, dan karakter fiksi. Berikut ini adalah sebuah daftar karakter dari serial televisi animasi Nickelodeon tersebut. Karakter utama Tommy Pickles (diisi suaranya oleh E.G. Daily, dan Tami Holbrook dalam episode pilot yang tidak ditayangkan): Tommy adalah karakter utama dari anime tersebut, putra berusia satu tahun dari Stu dan Didi Pickles, dan aban...

 

Biak Roundleaf Bat Status konservasi Risiko Rendah (IUCN 3.1)Beresiko rendah Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Chiroptera Famili: Hipposideridae Genus: Hipposideros Spesies: H. papua Nama binomial Hipposideros papuaThomas & Doria, 1886) Biak Roundleaf Bat range Barong biak atau Hipposideros papua adalah sejenis Barong (kelelawar) yang endemisme di Indonesia. Spesies ini terdapat di pulau Halmahera, Bacan, Gebe, Biak, Supiori, dan Numfoo...

 

Badan Lingkungan Hidup Norwegia didirikan pada tanggal 1 Juli 2013 melalui merger antatra Direktorat Pengelolaan Alam Norwegia dan Badan Iklim dan Polusi Norwegia.[1] Badan ini memiliki sekitar 700 karyawan. Badan ini memiliki kantor di Trondheim untuk alam dan di Oslo untuk iklim dan pengelolaan polusi. Badan ini dipimpin oleh Ellen Hambro. Referensi ^ Norwegian Environment Agency Diarsipkan 2021-01-24 di Wayback Machine. Norwegian Environment Agency. Artikel bertopik Norwegia ini a...

Radio station in Providence, Rhode IslandWWBBProvidence, Rhode IslandBroadcast areaProvidence metropolitan areaFrequency101.5 MHz (HD Radio)BrandingB101ProgrammingFormatClassic hitsOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWHJJ, WHJY, WSNE-FMHistoryFirst air dateMay 30, 1955; 68 years ago (1955-05-30)Former call signsWTMH (1955–1958)WXCN (1958–1964)WCRQ (1964–1968)WLKW-FM (1968–1989)Technical information[1]Licensing authorityFCCFacilit...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Gaya komunikasi merupakan langkah yang dilakukan oleh komunikator kepada komunikan untuk menyampaikan pesan. Pesan yang disampaikan oleh komunikator memiliki gaya dan ciri khas yang berbeda-beda. Perbedaan gaya komunikasi dapat dilihat dari segi pendid...

 

ScrappleSepiring scrappleNama lainPon haus, KrepplesJenisMushTempat asalUnited StatesDaerahPennsylvaniaBahan utamamush of pork, cornmeal, flour, buckwheat flour, spicesEnergi makanan(per porsi )119 per 2 ounces kkalSunting kotak info • L • BBantuan penggunaan templat ini Scrapple atau nama lainnya pon haus atau pan rabbit adalah semacam lumatan dari sisa-sisa potongan daging babi, seperti kepala, otak, hati, dan kulit, dipadu dengan tepung jagung dan gandum. Lumatan ini kem...

« MIDI » redirige ici. Pour les autres significations, voir Midi. Exemple de musique créée à partir de commandes MIDI. Le Musical Instrument Digital Interface ou MIDI est un protocole de communication et un format de fichier dédiés à la musique, et utilisés pour la communication entre instruments électroniques, contrôleurs, séquenceurs, et logiciels de musique. Ce protocole est né de la volonté de l'industrie de normaliser les échanges entre les instruments électron...

 

Tokyo Skytree東京スカイツリーInformasi umumStatusSelesaiJenisMenara penyiaran, restoran, dan observasiGaya arsitekturNeo-futurismeLokasi Sumida, Tokyo, JepangKoordinat35°42′36″N 139°48′39″E / 35.7101°N 139.8107°E / 35.7101; 139.8107Koordinat: 35°42′36″N 139°48′39″E / 35.7101°N 139.8107°E / 35.7101; 139.8107Mulai dibangun14 Juli 2008 (2008-07-14)Rampung29 Februari 2012 (2012-02-29)Pembukaan22 Mei 2012...

 

US collegiate summer baseball league For other uses, see Coastal Plain League (disambiguation). Coastal Plain LeagueSportBaseballFounded1997No. of teams15Country United StatesMost recentchampion(s)Lexington County Blowfish (2023)Most titlesHigh Point-Thomasville HiToms, Edenton Steamers, Savannah Bananas (3)Official websitecoastalplain.com The Coastal Plain League (CPL) is a wood-bat collegiate summer baseball league, featuring college players recruited from throughout the nation. The le...

Asfar ibn Shiruya (Gilaki/Persian: اسفار بن شیرویه: died 931) was an Iranian military leader of Gilaki origin, active in northern Iran (esp. Tabaristan and Jibal) in the early 10th century. He played a major role in the succession disputes of the Alids of Tabaristan, and managed to establish himself as the ruler of Tabaristan and northern Jibal briefly from 928 to 930. Name Asfār is a local Caspian form of Middle Persian aswār, which means rider, cavalryman. The New Persian for...

 

Pour les articles homonymes, voir Douze-Mars. Éphémérides Mars 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         12 février 12 avril Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du jour modi...

 

Historic hotel in Marquette, Michigan, United States Landmark InnFormer names Hotel Northland Heritage House Old Marquette Inn General informationLocationMarquette, MichiganAddress230 North Front StreetCoordinates46°32′42″N 87°23′31″W / 46.545°N 87.392°W / 46.545; -87.392Construction started1917Completed1930Opened1930Renovated1995–97OwnerGraves Hospitality ManagementHeight6 storiesDesign and constructionArchitect(s)Samuel Shackford Otis[1]Website...

犹太人יהודים‎(Yehudim)雅各耶稣大卫王爱因斯坦马克思迈蒙尼德弗拉维奥·约瑟夫斯弗洛伊德斯宾诺莎本-古里安西奥多·赫茨尔娜塔莉·波特曼弗里茨·哈伯冯诺依曼門德爾頌谢尔盖·布林罗莎·卢森堡莉泽·迈特纳乔姆斯基维特根斯坦大卫·李嘉图尼尔斯·玻尔赛尔曼·瓦克斯曼卡夫卡史翠珊泽连斯基罗莎琳德·富兰克林古斯塔夫·马勒普鲁斯特卡米耶·毕沙罗涂尔干摩西...

 

Presbyterian Church, Magheramason Magheramason (from Irish Machaire Measáin)[1][2] is a small village and townland in County Tyrone, Northern Ireland. The village sits near the County Londonderry/County Tyrone border, 5 miles (8.0 km) from the city of Derry and 9 miles (14 km) from the town of Strabane. In the 2001 census, it had a population of 393 people. It lies within the Derry City and Strabane District Council area.[3] Religion In the 1870s, Presbyter...

 

1968 studio album by Iron ButterflyIn-A-Gadda-Da-VidaStudio album by Iron ButterflyReleasedJune 14, 1968RecordedFirst half of 1968 (side two was recorded on May 27, 1968)Studio Gold Star, Hollywood Ultra-Sonic, Hempstead Genre Acid rock psychedelic rock hard rock proto-metal Length36:15LabelAtco/Atlantic RecordsProducerJim HiltonIron Butterfly chronology Heavy(1968) In-A-Gadda-Da-Vida(1968) Ball(1969) Singles from In-A-Gadda-Da-Vida In-A-Gadda-Da-Vida (edited)Released: July 31, 1968 ...

American rock band The SmithereensDiken, Babjak, and DiNizio in 2009Background informationOriginCarteret, New Jersey, U.S.GenresAlternative rockpower popcollege rockhard rockYears active1980–presentLabelsD-Tone RecordsLittle Ricky RecordsEnigmaRestlessCapitolBMGRCAVelvelKocheOne MusicMembersJim BabjakMike MesarosDennis DikenPast membersPat DiNizioSevero JornacionWebsiteOfficialSmithereens.com jimbabjak.com The Smithereens are an American rock band from Carteret, New Jersey.[1] The g...

 

Questa voce sull'argomento contee dell'Indiana è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di VermillionconteaContea di Vermillion – VedutaSede della Contea a Newport LocalizzazioneStato Stati Uniti Stato federato Indiana AmministrazioneCapoluogoNewport Data di istituzione1824 TerritorioCoordinatedel capoluogo39°51′00″N 87°27′36″W39°51′00″N, 87°27′36″W (Contea di Vermillion) Superficie673 km² Abitanti16...

 

Relations between Palestine and the UN State of Palestine[1] United Nations membershipRepresented byState of PalestineMembershipNon-member Observer StateSinceNovember 29, 2012 (2012-11-29)Permanent RepresentativeRiyad Mansour Issues relating to the State of Palestine and aspects of the Israeli–Palestinian conflict occupy continuous debates, resolutions, and resources at the United Nations. Since its founding in 1948, the United Nations Security Council, as of January ...

1987 Anchorage mayoral election ← 1984 October 12, 1987 (first round)[1]November 3, 1987 (runoff)[2] 1990 → Turnout52.46% (runoff)[2]   Candidate Tom Fink Dave Walsh H. A. Red Boucher First-round vote 15,666 18,200 12,346 First-round percentage 30.30% 35.20% 23.88% Second-round vote 30,962 23,214 Second-round percentage 57.15% 42.85%   Candidate Larry Baker First-round vote 3,342 First-round percentage 6.46% Mayor before election Tony K...

 

أي ماي ميあいまいみー(Ai Mai Mī)صنفكوميديا مانغاكاتبتشوبورو نيوبوميناشرتايكشوبومجلةمانغا لايف وينتاريخ الإصداريونيو 2009 – حتَّى الآنمجلدات6 حلقات تلفزية مخرج إتزوكي إمازاكي ملحن فيوغا هاتوري إستديو سيفين بث آي تي-إكس عرض يناير 3, 2013 – مارس 28, 2013 حلقات تلفزية Ai Mai Mi: Mousou Catastrophe مخ...