Positive-definite function

In mathematics, a positive-definite function is, depending on the context, either of two types of function.

Definition 1

Let be the set of real numbers and be the set of complex numbers.

A function is called positive semi-definite if for all real numbers x1, …, xn the n × n matrix

is a positive semi-definite matrix.[citation needed]

By definition, a positive semi-definite matrix, such as , is Hermitian; therefore f(−x) is the complex conjugate of f(x)).

In particular, it is necessary (but not sufficient) that

(these inequalities follow from the condition for n = 1, 2.)

A function is negative semi-definite if the inequality is reversed. A function is definite if the weak inequality is replaced with a strong (<, > 0).

Examples

If is a real inner product space, then , is positive definite for every : for all and all we have

As nonnegative linear combinations of positive definite functions are again positive definite, the cosine function is positive definite as a nonnegative linear combination of the above functions:

One can create a positive definite function easily from positive definite function for any vector space : choose a linear function and define . Then

where where are distinct as is linear.[1]

Bochner's theorem

Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

The converse result is Bochner's theorem, stating that any continuous positive-definite function on the real line is the Fourier transform of a (positive) measure.[2]

Applications

In statistics, and especially Bayesian statistics, the theorem is usually applied to real functions. Typically, n scalar measurements of some scalar value at points in are taken and points that are mutually close are required to have measurements that are highly correlated. In practice, one must be careful to ensure that the resulting covariance matrix (an n × n matrix) is always positive-definite. One strategy is to define a correlation matrix A which is then multiplied by a scalar to give a covariance matrix: this must be positive-definite. Bochner's theorem states that if the correlation between two points is dependent only upon the distance between them (via function f), then function f must be positive-definite to ensure the covariance matrix A is positive-definite. See Kriging.

In this context, Fourier terminology is not normally used and instead it is stated that f(x) is the characteristic function of a symmetric probability density function (PDF).

Generalization

One can define positive-definite functions on any locally compact abelian topological group; Bochner's theorem extends to this context. Positive-definite functions on groups occur naturally in the representation theory of groups on Hilbert spaces (i.e. the theory of unitary representations).

Definition 2

Alternatively, a function is called positive-definite on a neighborhood D of the origin if and for every non-zero .[3][4]

Note that this definition conflicts with definition 1, given above.

In physics, the requirement that is sometimes dropped (see, e.g., Corney and Olsen[5]).

See also

References

  • Christian Berg, Christensen, Paul Ressel. Harmonic Analysis on Semigroups, GTM, Springer Verlag.
  • Z. Sasvári, Positive Definite and Definitizable Functions, Akademie Verlag, 1994
  • Wells, J. H.; Williams, L. R. Embeddings and extensions in analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84. Springer-Verlag, New York-Heidelberg, 1975. vii+108 pp.

Notes

  1. ^ Cheney, Elliot Ward (2009). A course in Approximation Theory. American Mathematical Society. pp. 77–78. ISBN 9780821847985. Retrieved 3 February 2022.
  2. ^ Bochner, Salomon (1959). Lectures on Fourier integrals. Princeton University Press.
  3. ^ Verhulst, Ferdinand (1996). Nonlinear Differential Equations and Dynamical Systems (2nd ed.). Springer. ISBN 3-540-60934-2.
  4. ^ Hahn, Wolfgang (1967). Stability of Motion. Springer.
  5. ^ Corney, J. F.; Olsen, M. K. (19 February 2015). "Non-Gaussian pure states and positive Wigner functions". Physical Review A. 91 (2): 023824. arXiv:1412.4868. Bibcode:2015PhRvA..91b3824C. doi:10.1103/PhysRevA.91.023824. ISSN 1050-2947. S2CID 119293595.

Read other articles:

RFA Cet article concerne l'histoire de la République fédérale d'Allemagne entre 1949 et 1990. Pour la période qui commence avec la réunification, voir Allemagne. Pour les articles homonymes, voir FRG. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (septembre 2016). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci ...

 

American politician (1935–2022) For the American psychologist, see Robert F. Krueger. Senator Krueger redirects here. For other uses, see Senator Krueger (disambiguation). Bob KruegerOfficial portrait, 1993United States Ambassador to Botswana In officeJuly 23, 1996 – December 6, 1999Nominated byBill ClintonPreceded byHoward JeterSucceeded byJohn E. LangeUnited States Ambassador to Burundi In officeJune 29, 1994 – September 10, 1995Nominated byBill ClintonPreceded byCyn...

 

For the wine, see Salice Salentino (wine). Comune in Apulia, ItalySalice SalentinoComuneComune di Salice SalentinoLocation of Salice Salentino Salice SalentinoLocation of Salice Salentino in ItalyShow map of ItalySalice SalentinoSalice Salentino (Apulia)Show map of ApuliaCoordinates: 40°23′N 17°58′E / 40.383°N 17.967°E / 40.383; 17.967CountryItalyRegionApuliaProvinceLecce (LE)Government • MayorAntonio RosatoArea[1] • Total59.87&#...

ComercialCalcio Bafo, Leão do Norte Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Nero, bianco Dati societari Città Ribeirão Preto Nazione  Brasile Confederazione CONMEBOL Federazione CBF Campionato Paulista Série A2 Fondazione 1911 Presidente Brenno A.S. Martins Allenatore Luciano Dias Stadio Francisco de Palma Travassos(18 998 posti) Palmarès Si invita a seguire il modello di voce Il Comercial Futebol Clube, meglio noto come Comercial de Ribeirão Preto o s...

 

Éphémérides Chronologie du Québec 1882 1883 1884  1885  1886 1887 1888Décennies au Québec :1850 1860 1870  1880  1890 1900 1910 Chronologie dans le monde 1882 1883 1884  1885  1886 1887 1888Décennies :1850 1860 1870  1880  1890 1900 1910Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso...

 

شبه جزيرة كولا   معلومات جغرافية   المنطقة فينوسكنديا  الإحداثيات 68°N 36°E / 68°N 36°E / 68; 36   [1] [2] المسطح المائي بحر بارنتس،  والبحر الأبيض  المساحة 100000 كيلومتر مربع  الحكومة البلد روسيا (1991–)  التقسيم الإداري أوبلاست مورمانسك  تعديل م...

Флаг гордости бисексуалов Бисексуальность      Сексуальные ориентации Бисексуальность Пансексуальность Полисексуальность Моносексуальность Сексуальные идентичности Би-любопытство Гетерогибкость и гомогибкость Сексуальная текучесть Исследования Шк...

 

Undisclosed DesiresSingel oleh Musedari album The ResistanceDirilis16 November 2009FormatDigital downloadDirekam2009 (2009)GenreElectronic rock, R&B, synthpopDurasi3:56 (Versi album)3:37 (Radio Edit)LabelWarnerPenciptaMatthew BellamyProduserMuse Undisclosed Desires atau Undisclosed (Hasrat Terpendam)[1][2] adalah lagu dari band asal Inggris beraliran rock alternatif, Muse yang berada di album kelima mereka The Resistance. Undisclosed Desires dirilis sebagai singel ked...

 

Islam: Shi'a Islam Template‑class Islam portalThis template is within the scope of WikiProject Islam, a collaborative effort to improve the coverage of Islam-related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.IslamWikipedia:WikiProject IslamTemplate:WikiProject IslamIslam-related articlesTemplateThis template does not require a rating on Wikipedia's content assessment scale.This templ...

2022年喬治亞州聯邦眾議員選舉 ← 2020 2022年11月8日 2024 → 喬治亞州聯邦眾議員全部14個議席   多數黨 少數黨   政党 共和黨 民主党 上届结果 8 6 赢得席次 9 5 席次差额 ▲ 1 ▼ 1 民選得票 2,043,842 1,863,870 得票率 52.31% 47.69% 得票变动 ▲ 1.31% ▼ 1.31% 共和黨   50-59%   60-69%   70-79% 民主黨   50-59%   60-69%   70-79% &...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

حصار رودس جزء من الحروب العثمانية في أوروبا    التاريخ وسيط property غير متوفر. بداية 1480  نهاية 1480  الموقع رودس  36°10′00″N 28°00′00″E / 36.166666666667°N 28°E / 36.166666666667; 28   تعديل مصدري - تعديل   في عام 1480 صمدت حامية فرسان الإسبتارية الصغيرة في جزيرة رودس ضد هجو...

Carrier-based multirole aircraft family Sky Warrior redirects here. For the UAV formerly known as the Sky Warrior, see General Atomics MQ-1C Gray Eagle. A-3 (A3D) Skywarrior An EA-3B Skywarrior from VQ-1 over the South China Sea in 1974. Role Strategic bomberType of aircraft National origin United States Manufacturer Douglas Aircraft Company First flight 28 October 1952 Introduction 1956 Retired 27 September 1991 Status Retired Primary user United States Navy Produced 1956–1961 Number ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كأس أبطال الكؤوس الآسيوية 1999–2000تفاصيل المسابقةالفرق22المراكز النهائيةالبطل شيميزو إس-بولسالوصيف الزور...

 

CoriolanusPoster rilis teatrikalSutradaraRalph FiennesProduser Ralph Fiennes John Logan Gabrielle Tana Julia Taylor-Stanley Colin Vaines SkenarioJohn LoganBerdasarkanCoriolanusoleh William ShakespearePemeran Ralph Fiennes Gerard Butler Vanessa Redgrave Brian Cox Jessica Chastain John Kani James Nesbitt Paul Jesson Lubna Azabal Ashraf Barhom Penata musikIlan EshkeriSinematograferBarry AckroydPenyuntingNicolas GasterPerusahaanproduksi Icon Entertainment International BBC Films Distributor...

《集外集拾遗》是许广平收集出版的鲁迅文集,收录了鲁迅在1912年至1936年所作但未编入以往各文集的杂文和诗。 杂文:包括《怀旧》,《诗歌之敌》,《中山先生逝世后一周年》,《〈静静的顿河〉后记》,《帮忙文学与帮闲文学》,《〈解放了的堂吉诃德〉后记》等。 诗:《偶成》,《一二八战后作》,《赠画师》,《秋夜有感》,《亥年残秋偶作》等。 附录:《〈文�...

 

パンク 町田(パンク まちだ)誕生 (1968-08-10) 1968年8月10日(56歳)東京都中野区沼袋職業 作家ナチュラリスト動物研究家国籍 日本ジャンル 生物全般 ウィキポータル 文学テンプレートを表示 パンク 町田(パンク まちだ、本名:町田 英文、1968年8月10日 - )は、東京都中野区沼袋出身の動物研究家。 血液型O型。身長165cm、体重90kg。 人物 現在は千葉県旭市の有限会社バ�...

 

French soldier and politician (1519–1563) François de LorraineDuke of Guise Duke of Aumale Prince de JoinvillePortrait by François Clouet, c. 1550-60Duke of GuiseReign12 April 1550 – 24 February 1563PredecessorClaudeSuccessorHenri I Born17 February 1519Bar-le-Duc, Lorraine, Holy Roman EmpireDied24 February 1563(1563-02-24) (aged 44)near Orléans, FranceNoble familyGuiseSpouse(s) Anna d'Este ​(m. 1548)​IssueHenri I, Duke of GuiseCatherineCharle...

Theater in Paris, France The present-day Théâtre du Marais The Théâtre du Marais has been the name of several theatres and theatrical troupes in Paris, France. The original and most famous theatre of the name operated in the 17th century. The name was briefly revived for a revolutionary theatre in 1791, and revived again in 1976. The present-day Théâtre du Marais operates at 37, rue Volta in the 3rd arrondissement of Paris. First incarnation (1634–1673) The Théâtre du Marais on the ...

 

Los Condados de Inglaterra (counties en inglés), son las regiones político-administrativas en las que está dividida Inglaterra. Cada una de ellas está gobernada por un Lord-Lieutenant (lugarteniente) representante del Rey en la región. Excepto Huntingdonshire y Yorkshire, todos son condados administrativos. Hoy en día, Huntingdonshire es un distrito administrado por Cambridgeshire, y Yorkshire está dividido entre Yorkshire del Este, del Norte, del Sur, y del Oeste. El sufijo shire se u...