Modeling a dynamical system's states as infinite sequences of symbols
In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence.
Because of their explicit, discrete nature, such systems are often relatively easy to characterize and understand. They form a key tool for studying topological or smooth dynamical systems, because in many important cases it is possible to reduce the dynamics of a more general dynamical system to a symbolic system. To do so, a Markov partition is used to provide a finite cover for the smooth system; each set of the cover is associated with a single symbol, and the sequences of symbols result as a trajectory of the system moves from one covering set to another.
Consider the set of two-sided infinite sequences on two symbols, 0 and 1. A typical element in this set looks like: (..., 0, 1, 0, 0, 1, 0, 1, ... )
There will be exactly two fixed points under the shift map: the sequence of all zeroes, and the sequence of all ones. A periodic sequence will have a periodic orbit. For instance, the sequence (..., 0, 1, 0, 1, 0, 1, 0, 1, ...) will have period two.
More complex concepts such as heteroclinic orbits and homoclinic orbits also have simple descriptions in this system. For example, any sequence that has only a finite number of ones will have a homoclinic orbit, tending to the sequence of all zeros in forward and backward iterations.
Itinerary
Itinerary of point with respect to the partition is a sequence of symbols. It describes dynamic of the point. [5]
Applications
Symbolic dynamics originated as a method to study general dynamical systems; now its techniques and ideas have found significant applications in data storage and transmission, linear algebra, the motions of the planets and many other areas[citation needed]. The distinct feature in symbolic dynamics is that time is measured in discrete intervals. So at each time interval the system is in a particular state. Each state is associated with a symbol and the evolution of the system is described by an infinite sequence of symbols—represented effectively as strings. If the system states are not inherently discrete, then the state vector must be discretized, so as to get a coarse-grained description of the system.
Bruce Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts. Universitext, Springer-Verlag, Berlin, 1998. x+252 pp. ISBN3-540-62738-3MR1484730