Share to: share facebook share twitter share wa share telegram print page

Abelian variety

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory.

An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those complex tori that can be holomorphically embedded into a complex projective space.

Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. Localization techniques lead naturally from abelian varieties defined over number fields to ones defined over finite fields and various local fields. Since a number field is the fraction field of a Dedekind domain, for any nonzero prime of your Dedekind domain, there is a map from the Dedekind domain to the quotient of the Dedekind domain by the prime, which is a finite field for all finite primes. This induces a map from the fraction field to any such finite field. Given a curve with equation defined over the number field, we can apply this map to the coefficients to get a curve defined over some finite field, where the choices of finite field correspond to the finite primes of the number field.

Abelian varieties appear naturally as Jacobian varieties (the connected components of zero in Picard varieties) and Albanese varieties of other algebraic varieties. The group law of an abelian variety is necessarily commutative and the variety is non-singular. An elliptic curve is an abelian variety of dimension 1. Abelian varieties have Kodaira dimension 0.

History and motivation

In the early nineteenth century, the theory of elliptic functions succeeded in giving a basis for the theory of elliptic integrals, and this left open an obvious avenue of research. The standard forms for elliptic integrals involved the square roots of cubic and quartic polynomials. When those were replaced by polynomials of higher degree, say quintics, what would happen?

In the work of Niels Abel and Carl Jacobi, the answer was formulated: this would involve functions of two complex variables, having four independent periods (i.e. period vectors). This gave the first glimpse of an abelian variety of dimension 2 (an abelian surface): what would now be called the Jacobian of a hyperelliptic curve of genus 2.

After Abel and Jacobi, some of the most important contributors to the theory of abelian functions were Riemann, Weierstrass, Frobenius, Poincaré and Picard. The subject was very popular at the time, already having a large literature.

By the end of the 19th century, mathematicians had begun to use geometric methods in the study of abelian functions. Eventually, in the 1920s, Lefschetz laid the basis for the study of abelian functions in terms of complex tori. He also appears to be the first to use the name "abelian variety". It was André Weil in the 1940s who gave the subject its modern foundations in the language of algebraic geometry.

Today, abelian varieties form an important tool in number theory, in dynamical systems (more specifically in the study of Hamiltonian systems), and in algebraic geometry (especially Picard varieties and Albanese varieties).

Analytic theory

Definition

A complex torus of dimension g is a torus of real dimension 2g that carries the structure of a complex manifold. It can always be obtained as the quotient of a g-dimensional complex vector space by a lattice of rank 2g. A complex abelian variety of dimension g is a complex torus of dimension g that is also a projective algebraic variety over the field of complex numbers. By invoking the Kodaira embedding theorem and Chow's theorem one may equivalently define a complex abelian variety of dimension g to be a complex torus of dimension g that admits a positive line bundle. Since they are complex tori, abelian varieties carry the structure of a group. A morphism of abelian varieties is a morphism of the underlying algebraic varieties that preserves the identity element for the group structure. An isogeny is a finite-to-one morphism.

When a complex torus carries the structure of an algebraic variety, this structure is necessarily unique. In the case g = 1, the notion of abelian variety is the same as that of elliptic curve, and every complex torus gives rise to such a curve; for g > 1 it has been known since Riemann that the algebraic variety condition imposes extra constraints on a complex torus.

Riemann conditions

The following criterion by Riemann decides whether or not a given complex torus is an abelian variety, i.e. whether or not it can be embedded into a projective space. Let X be a g-dimensional torus given as X = V/L where V is a complex vector space of dimension g and L is a lattice in V. Then X is an abelian variety if and only if there exists a positive definite hermitian form on V whose imaginary part takes integral values on L×L. Such a form on X is usually called a (non-degenerate) Riemann form. Choosing a basis for V and L, one can make this condition more explicit. There are several equivalent formulations of this; all of them are known as the Riemann conditions.

The Jacobian of an algebraic curve

Every algebraic curve C of genus g ≥ 1 is associated with an abelian variety J of dimension g, by means of an analytic map of C into J. As a torus, J carries a commutative group structure, and the image of C generates J as a group. More accurately, J is covered by Cg:[1] any point in J comes from a g-tuple of points in C. The study of differential forms on C, which give rise to the abelian integrals with which the theory started, can be derived from the simpler, translation-invariant theory of differentials on J. The abelian variety J is called the Jacobian variety of C, for any non-singular curve C over the complex numbers. From the point of view of birational geometry, its function field is the fixed field of the symmetric group on g letters acting on the function field of Cg.

Abelian functions

An abelian function is a meromorphic function on an abelian variety, which may be regarded therefore as a periodic function of n complex variables, having 2n independent periods; equivalently, it is a function in the function field of an abelian variety. For example, in the nineteenth century there was much interest in hyperelliptic integrals that may be expressed in terms of elliptic integrals. This comes down to asking that J is a product of elliptic curves, up to an isogeny.

Important theorems

One important structure theorem of abelian varieties is Matsusaka's theorem. It states that over an algebraically closed field every abelian variety is the quotient of the Jacobian of some curve; that is, there is some surjection of abelian varieties where is a Jacobian. This theorem remains true if the ground field is infinite.[2]

Algebraic definition

Two equivalent definitions of abelian variety over a general field k are commonly in use:

When the base is the field of complex numbers, these notions coincide with the previous definition. Over all bases, elliptic curves are abelian varieties of dimension 1.

In the early 1940s, Weil used the first definition (over an arbitrary base field) but could not at first prove that it implied the second. Only in 1948 did he prove that complete algebraic groups can be embedded into projective space. Meanwhile, in order to make the proof of the Riemann hypothesis for curves over finite fields that he had announced in 1940 work, he had to introduce the notion of an abstract variety and to rewrite the foundations of algebraic geometry to work with varieties without projective embeddings (see also the history section in the Algebraic Geometry article).

Structure of the group of points

By the definitions, an abelian variety is a group variety. Its group of points can be proven to be commutative.

For C, and hence by the Lefschetz principle for every algebraically closed field of characteristic zero, the torsion group of an abelian variety of dimension g is isomorphic to (Q/Z)2g. Hence, its n-torsion part is isomorphic to (Z/nZ)2g, i.e. the product of 2g copies of the cyclic group of order n.

When the base field is an algebraically closed field of characteristic p, the n-torsion is still isomorphic to (Z/nZ)2g when n and p are coprime. When n and p are not coprime, the same result can be recovered provided one interprets it as saying that the n-torsion defines a finite flat group scheme of rank 2g. If instead of looking at the full scheme structure on the n-torsion, one considers only the geometric points, one obtains a new invariant for varieties in characteristic p (the so-called p-rank when n = p).

The group of k-rational points for a global field k is finitely generated by the Mordell-Weil theorem. Hence, by the structure theorem for finitely generated abelian groups, it is isomorphic to a product of a free abelian group Zr and a finite commutative group for some non-negative integer r called the rank of the abelian variety. Similar results hold for some other classes of fields k.

Products

The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n. An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension. Any abelian variety is isogenous to a product of simple abelian varieties.

Polarisation and dual abelian variety

Dual abelian variety

To an abelian variety A over a field k, one associates a dual abelian variety Av (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrised by a k-variety T is defined to be a line bundle L on A×T such that

  1. for all t in T, the restriction of L to A×{t} is a degree 0 line bundle,
  2. the restriction of L to {0}×T is a trivial line bundle (here 0 is the identity of A).

Then there is a variety Av and a family of degree 0 line bundles P, the Poincaré bundle, parametrised by Av such that a family L on T is associated a unique morphism f: TAv so that L is isomorphic to the pullback of P along the morphism 1A×f: A×TA×Av. Applying this to the case when T is a point, we see that the points of Av correspond to line bundles of degree 0 on A, so there is a natural group operation on Av given by tensor product of line bundles, which makes it into an abelian variety.

This association is a duality in the sense that + it is contravariant functorial, i.e. it associates to all morphisms f: AB dual morphisms fv: BvAv in a compatible way, and there is a natural isomorphism between the double dual Avv and A (defined via the Poincaré bundle). The n-torsion of an abelian variety and the n-torsion of its dual are dual to each other when n is coprime to the characteristic of the base. In general - for all n - the n-torsion group schemes of dual abelian varieties are Cartier duals of each other. This generalises the Weil pairing for elliptic curves.

Polarisations

A polarisation of an abelian variety is an isogeny from an abelian variety to its dual that is symmetric with respect to double-duality for abelian varieties and for which the pullback of the Poincaré bundle along the associated graph morphism is ample (so it is analogous to a positive-definite quadratic form). Polarised abelian varieties have finite automorphism groups. A principal polarisation is a polarisation that is an isomorphism. Jacobians of curves are naturally equipped with a principal polarisation as soon as one picks an arbitrary rational base point on the curve, and the curve can be reconstructed from its polarised Jacobian when the genus is > 1. Not all principally polarised abelian varieties are Jacobians of curves; see the Schottky problem. A polarisation induces a Rosati involution on the endomorphism ring of A.

Polarisations over the complex numbers

Over the complex numbers, a polarised abelian variety can be defined as an abelian variety A together with a choice of a Riemann form H. Two Riemann forms H1 and H2 are called equivalent if there are positive integers n and m such that nH1=mH2. A choice of an equivalence class of Riemann forms on A is called a polarisation of A; over the complex number this is equivalent to the definition of polarisation given above. A morphism of polarised abelian varieties is a morphism AB of abelian varieties such that the pullback of the Riemann form on B to A is equivalent to the given form on A.

Abelian scheme

One can also define abelian varieties scheme-theoretically and relative to a base. This allows for a uniform treatment of phenomena such as reduction mod p of abelian varieties (see Arithmetic of abelian varieties), and parameter-families of abelian varieties. An abelian scheme over a base scheme S of relative dimension g is a proper, smooth group scheme over S whose geometric fibers are connected and of dimension g. The fibers of an abelian scheme are abelian varieties, so one could think of an abelian scheme over S as being a family of abelian varieties parametrised by S.

For an abelian scheme A / S, the group of n-torsion points forms a finite flat group scheme. The union of the pn-torsion points, for all n, forms a p-divisible group. Deformations of abelian schemes are, according to the Serre–Tate theorem, governed by the deformation properties of the associated p-divisible groups.

Example

Let be such that has no repeated complex roots. Then the discriminant is nonzero. Let , so is an open subscheme of . Then is an abelian scheme over . It can be extended to a Néron model over , which is a smooth group scheme over , but the Néron model is not proper and hence is not an abelian scheme over .

Non-existence

V. A. Abrashkin[3] and Jean-Marc Fontaine[4] independently proved that there are no nonzero abelian varieties over Q with good reduction at all primes. Equivalently, there are no nonzero abelian schemes over Spec Z. The proof involves showing that the coordinates of pn-torsion points generate number fields with very little ramification and hence of small discriminant, while, on the other hand, there are lower bounds on discriminants of number fields.[5]

Semiabelian variety

A semiabelian variety is a commutative group variety which is an extension of an abelian variety by a torus.

See also

References

  1. ^ Bruin, N. "N-Covers of Hyperelliptic Curves" (PDF). Math Department Oxford University. Retrieved 14 January 2015. J is covered by Cg:
  2. ^ Milne, J.S., Jacobian varieties, in Arithmetic Geometry, eds Cornell and Silverman, Springer-Verlag, 1986
  3. ^ "V. A. Abrashkin, "Group schemes of period $p$ over the ring of Witt vectors", Dokl. Akad. Nauk SSSR, 283:6 (1985), 1289–1294". www.mathnet.ru. Retrieved 2020-08-23.
  4. ^ Fontaine, Jean-Marc. Il n'y a pas de variété abélienne sur Z. OCLC 946402079.
  5. ^ "There is no Abelian scheme over Z" (PDF). Archived (PDF) from the original on 23 Aug 2020.

Sources

Read other articles:

Wilayah Persemakmuran ditunjukkan oleh warna biru. Bekas Wilayah Persemakmuran ditunjukkan oleh warna merah. Alam Persemakmuran (bahasa Inggris: Commonwealth Realm) adalah negara-negara berdaulat dalam Persemakmuran Bangsa-Bangsa yang mengakui penguasa Britania Raya sebagai kepala negara masing-masing.[1][2] Alam Persemakmuran saat ini berjumlah lima belas negara, yang bila digabungkan memiliki luas sebesar 18,8 juta km² (7,3 juta mil², tidak termasuk klaim Antarktika) dan …

1964 soundtrack album by Henry ManciniThe Pink Panther: Music from the Film Score Composed and Conducted by Henry ManciniSoundtrack album by Henry ManciniReleased1964RecordedSeptember 16–18, 1963GenreSoundtrackLength28:58LabelRCA VictorProducerJoe ReismanSingles from The Pink Panther: Music from the Film Score Composed and Conducted by Henry Mancini The Pink Panther ThemeReleased: 1964 The Pink Panther: Music from the Film Score Composed and Conducted by Henry Mancini is a soundtrack a…

Re di SpagnaRey de EspañaStemma del Re di Spagna Felipe VI, attuale Re di Spagna SiglaRdE Stato Spagna TipoCapo di Stato In caricaFelipe VI da19 giugno 2014 Istituito22 novembre 1975 PredecessorePresidente del Consiglio di Reggenza Durata mandatoad vitam Bilancio7,8 milioni di euro l'anno SedePalazzo reale di Madrid, Madrid IndirizzoC. de Bailén, s/n, 28071 Madrid, Spagna Modifica dati su Wikidata · Manuale Il Re di Spagna, nel sistema politico spagnolo, è il capo di Stato, simbolo…

نيلس أسلك فالكيابا   معلومات شخصية الميلاد 23 مارس 1943(1943-03-23) الوفاة 26 نوفمبر 2001 (58 سنة)إسبو مواطنة فنلندا النرويج (2001–)  [1]   في المنصب1978  – 1983  في مقاطعة لابي  الحياة العملية المهنة شاعر،  ورسام،  ومغني،  ومدرس،  وصحفي،  وملحن،  وموسيقي تسجيلات…

火星 以下の表は、火星表面に存在する人工物のリストである。地球から火星に到達した宇宙船が掲載されている。そのほとんどは当初の目的を果たした後は機能を失ったが、オポチュニティは2011年9月現在も稼働している。エクソマーズにおける着陸実験モジュール「スキアパレッリ」は、火星に到達した直近の人工物である。以下の表には、部品やパラシュート、熱シ

Remshagen Gemeinde Lindlar Koordinaten: 51° 1′ N, 7° 25′ O51.0219444444447.42293Koordinaten: 51° 1′ 19″ N, 7° 25′ 12″ O Höhe: 293 m ü. NN Einwohner: 451 (1. Jun. 2022)Gemeinde Lindlar Postleitzahl: 51789 Vorwahl: 02266 Remshagen (Lindlar) Lage von Remshagen in Lindlar Karte von RemshagenKarte von Remshagen Die Ortschaft Remshagen ist ein Ortsteil der Gemeinde Lindlar, Oberbergischen Kreis im Regierungsbe…

Town in Maryland, United StatesChevy Chase Village, MarylandTown FlagCoat of armsLogoLocation of Chevy Chase Village within Montgomery County, Maryland (click to enlarge)Coordinates: 38°58′10″N 77°4′44″W / 38.96944°N 77.07889°W / 38.96944; -77.07889Country United StatesState MarylandCountyMontgomeryIncorporated1910[1]Government • Village ManagerShana Davis-CookArea[2] • Total0.42 sq mi (1.09 km2)…

United States historic placeMaple Hill CemeteryU.S. National Register of Historic Places The cemetery in 2006Show map of Huntsville, AlabamaShow map of AlabamaShow map of the United StatesLocation202 Maple Hill Dr., Huntsville, AlabamaCoordinates34°43′59″N 86°34′24″W / 34.73306°N 86.57333°W / 34.73306; -86.57333Area100 acres (40 ha)Built1822NRHP reference No.12000523[1]Added to NRHPAugust 22, 2012 Maple Hill Cemetery is the oldest and la…

Iván Eröd, Juni 2011 (aufgenommen von Amir Safari) Iván Eröd (* 2. Januar 1936 als Erőd Iván in Budapest; † 24. Juni 2019 in Wien[1]) war ein österreichischer Komponist, Pianist und Universitätslehrer ungarischer Herkunft.[2] Inhaltsverzeichnis 1 Leben 1.1 Ausbildung 1.2 Wirken 2 Preise und Auszeichnungen 3 Werke (Auswahl) 3.1 Orchesterwerke 3.2 Konzerte 3.3 Kammermusikwerke 3.4 Vokalwerke 3.5 Ensemblemusik 4 Weblinks 5 Einzelnachweise Leben Ausbildung Iván Eröd erhie…

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (ديسمبر 2020) الأعضاء والأنسجة القابلة للزرع يشير هذا المصطلح -على حد س

Coordenadas: 48.943075, 24.6685La edificación en memoria de las víctimas, en Demiániv Laz. Demiániv Laz (en ucraniano: Дем'я́нів Лаз; en polaco: Demianów Łaz)[1]​ es un lugar de fosas comunes de víctimas de las ejecuciones extrajudiciales cometidas por los soviéticos con ocasión del avance del ejército nazi alemán sobre Stanisławów (hoy Ivano-Frankivsk, en Ucrania) en 1941. Al menos 524 prisioneros polacos (entre ellos 150 mujeres con decenas de niños) fueron fusil…

The Son's RoomPoster film pertamaSutradara Nanni Moretti Produser Angelo Barbagallo Nanni Moretti Ditulis oleh Nanni Moretti PemeranNanni MorettiLaura MoranteJasmine TrincaGiuseppe SanfeliceSilvio OrlandoSofia VigliarClaudio SantamariaStefano AccorsiSimona LisiPenata musikNicola PiovaniDistributorSacher FilmTanggal rilis 9 Maret 2001 (2001-03-09) Durasi99 menitNegara Italia Bahasa Italia The Son's Room (bahasa Italia: La stanza del figlio) adalah film Italia tahun 2001 yang disutr…

Shia martyr Salim ibn Amr ibn Abd Allahسالِم بن عَمْرو بن عَبْداللهPersonalDied10th of Muharram, 61 A.H. / 10 October, 680 AD (aged 75)Cause of deathKilled in the Battle of KarbalaResting placeKarbala, IraqReligionIslamKnown forBeing a companion of Hussain ibn Ali Salim ibn Amr ibn Abd Allah (Arabic: سالِم بن عَمْرو بن عَبْدالله) was martyred in the Battle of Karbala. He accompanied Muslim ibn Aqil in his uprising, and after Muslim's martyrdom…

العلاقات البرتغالية الفلبينية البرتغال الفلبين   البرتغال   الفلبين تعديل مصدري - تعديل   العلاقات البرتغالية الفلبينية هي العلاقات الثنائية التي تجمع بين البرتغال والفلبين.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وج

2013 American filmExpectingTheatrical release posterDirected byJessie McCormackWritten byJessie McCormackProduced byKathryn HimoffJessie McCormackErik Van WyckStarringMichelle MonaghanRadha MitchellJon DoreMichael WestonMimi KennedyCinematographyMagela CrosignaniEdited byNimrod ErezKathryn HimoffMusic byMark KilianProductioncompaniesFilmColonyUnique New York ProductionsDistributed byTribeca FilmRelease dates March 11, 2013 (2013-03-11) (SXSW) December 6, 2013 (2…

1964 book of statements by Mao Zedong Little Red Book redirects here. For other uses, see Little Red Book (disambiguation). Quotations fromChairman Mao Tse-tungLittle Red Book 1993 centenary reprint of the 1966 bilingual edition, published by the People's Republic of China Printing OfficeEditorPeople's Liberation Army DailyAuthorMao Zedong (Mao Tse-tung)Hou Bo (photographer)Original title毛主席语录; Máo Zhǔxí YǔlùTranslatorCentral Compilation and Translation BureauCountryPeople's …

Proclamation granting citizen of Eritrea Eritrean Nationality ProclamationEritrean National AssemblyEnacted byGovernment of EritreaStatus: Current legislation Eritrean nationality law is regulated by the Constitution of Eritrea, as amended; the Eritrean Nationality Proclamation, and its revisions; and various international agreements to which the country is a signatory.[1] These laws determine who is, or is eligible to be, a national of Eritrea.[2] The legal means to acquire…

4th-century BC Greek Cynic philosopher For other uses, see Diogenes (disambiguation). Diogenes of SinopeStatue of Diogenes in Sinop, TurkeyBorn412 or 404 BCSinope, Paphlagonia(modern-day Sinop, Turkey)Died323 BC (aged 81 or 89)Corinth, GreeceEraAncient Greek philosophyRegionWestern philosophySchoolCynicismNotable ideasCosmopolitanism Diogenes (/daɪˈɒdʒɪniːz/ dy-OJ-in-eez; Ancient Greek: Διογένης, romanized: Diogénēs [di.oɡénɛːs]), also known as Diogenes the Cynic…

Graphic IRC client by Microsoft Microsoft Comic ChatMicrosoft Chat version 2.5Original author(s)MicrosoftDeveloper(s)David Kurlander, Microsoft Research Virtual Worlds GroupInitial releaseAugust 13, 1996; 27 years ago (1996-08-13)Final release2.5 / March 1999; 24 years ago (1999-03) Written inC++Operating systemMicrosoft WindowsPlatformIBM PCAvailable inMultiple languages [1]TypeIRC clientsLicenseProprietaryNot to be confused with Windows Chat. Mi…

1999 single by Pet Shop Boys I Don't Know What You Want but I Can't Give It Any MoreSingle by Pet Shop Boysfrom the album Nightlife B-side Silver Age Screaming Je t'aime... moi non plus Released19 July 1999 (1999-07-19)StudioQuad (New York City)Length 5:09 (album version) 4:29 (edit) LabelParlophoneSongwriter(s) Neil Tennant Chris Lowe Producer(s) David Morales Pet Shop Boys Pet Shop Boys singles chronology Somewhere (1997) I Don't Know What You Want but I Can't Give It Any More (…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 52.14.138.101