Complex manifold

Holomorphic Maps

In differential geometry and complex geometry, a complex manifold is a manifold with a complex structure, that is an atlas of charts to the open unit disc[1] in the complex coordinate space , such that the transition maps are holomorphic.

The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold) or an almost complex manifold.

Implications of complex structure

Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds.

For example, the Whitney embedding theorem tells us that every smooth n-dimensional manifold can be embedded as a smooth submanifold of R2n, whereas it is "rare" for a complex manifold to have a holomorphic embedding into Cn. Consider for example any compact connected complex manifold M: any holomorphic function on it is constant by the maximum modulus principle. Now if we had a holomorphic embedding of M into Cn, then the coordinate functions of Cn would restrict to nonconstant holomorphic functions on M, contradicting compactness, except in the case that M is just a point. Complex manifolds that can be embedded in Cn are called Stein manifolds and form a very special class of manifolds including, for example, smooth complex affine algebraic varieties.

The classification of complex manifolds is much more subtle than that of differentiable manifolds. For example, while in dimensions other than four, a given topological manifold has at most finitely many smooth structures, a topological manifold supporting a complex structure can and often does support uncountably many complex structures. Riemann surfaces, two dimensional manifolds equipped with a complex structure, which are topologically classified by the genus, are an important example of this phenomenon. The set of complex structures on a given orientable surface, modulo biholomorphic equivalence, itself forms a complex algebraic variety called a moduli space, the structure of which remains an area of active research.

Since the transition maps between charts are biholomorphic, complex manifolds are, in particular, smooth and canonically oriented (not just orientable: a biholomorphic map to (a subset of) Cn gives an orientation, as biholomorphic maps are orientation-preserving).

Examples of complex manifolds

Smooth complex algebraic varieties

Smooth complex algebraic varieties are complex manifolds, including:

Simply connected

The simply connected 1-dimensional complex manifolds are isomorphic to either:

Note that there are inclusions between these as Δ ⊆ CĈ, but that there are no non-constant holomorphic maps in the other direction, by Liouville's theorem.

Disc vs. space vs. polydisc

The following spaces are different as complex manifolds, demonstrating the more rigid geometric character of complex manifolds (compared to smooth manifolds):

  • complex space .
  • the unit disc or open ball

Almost complex structures

An almost complex structure on a real 2n-manifold is a GL(n, C)-structure (in the sense of G-structures) – that is, the tangent bundle is equipped with a linear complex structure.

Concretely, this is an endomorphism of the tangent bundle whose square is −I; this endomorphism is analogous to multiplication by the imaginary number i, and is denoted J (to avoid confusion with the identity matrix I). An almost complex manifold is necessarily even-dimensional.

An almost complex structure is weaker than a complex structure: any complex manifold has an almost complex structure, but not every almost complex structure comes from a complex structure. Note that every even-dimensional real manifold has an almost complex structure defined locally from the local coordinate chart. The question is whether this almost complex structure can be defined globally. An almost complex structure that comes from a complex structure is called integrable, and when one wishes to specify a complex structure as opposed to an almost complex structure, one says an integrable complex structure. For integrable complex structures the so-called Nijenhuis tensor vanishes. This tensor is defined on pairs of vector fields, X, Y by

For example, the 6-dimensional sphere S6 has a natural almost complex structure arising from the fact that it is the orthogonal complement of i in the unit sphere of the octonions, but this is not a complex structure. (The question of whether it has a complex structure is known as the Hopf problem, after Heinz Hopf.[3]) Using an almost complex structure we can make sense of holomorphic maps and ask about the existence of holomorphic coordinates on the manifold. The existence of holomorphic coordinates is equivalent to saying the manifold is complex (which is what the chart definition says).

Tensoring the tangent bundle with the complex numbers we get the complexified tangent bundle, on which multiplication by complex numbers makes sense (even if we started with a real manifold). The eigenvalues of an almost complex structure are ±i and the eigenspaces form sub-bundles denoted by T0,1M and T1,0M. The Newlander–Nirenberg theorem shows that an almost complex structure is actually a complex structure precisely when these subbundles are involutive, i.e., closed under the Lie bracket of vector fields, and such an almost complex structure is called integrable.

Kähler and Calabi–Yau manifolds

One can define an analogue of a Riemannian metric for complex manifolds, called a Hermitian metric. Like a Riemannian metric, a Hermitian metric consists of a smoothly varying, positive definite inner product on the tangent bundle, which is Hermitian with respect to the complex structure on the tangent space at each point. As in the Riemannian case, such metrics always exist in abundance on any complex manifold. If the skew symmetric part of such a metric is symplectic, i.e. closed and nondegenerate, then the metric is called Kähler. Kähler structures are much more difficult to come by and are much more rigid.

Examples of Kähler manifolds include smooth projective varieties and more generally any complex submanifold of a Kähler manifold. The Hopf manifolds are examples of complex manifolds that are not Kähler. To construct one, take a complex vector space minus the origin and consider the action of the group of integers on this space by multiplication by exp(n). The quotient is a complex manifold whose first Betti number is one, so by the Hodge theory, it cannot be Kähler.

A Calabi–Yau manifold can be defined as a compact Ricci-flat Kähler manifold or equivalently one whose first Chern class vanishes.

See also

Footnotes

  1. ^ One must use the open unit disc in the as the model space instead of because these are not isomorphic, unlike for real manifolds.
  2. ^ This means that all complex projective spaces are orientable, in contrast to the real case
  3. ^ Agricola, Ilka; Bazzoni, Giovanni; Goertsches, Oliver; Konstantis, Panagiotis; Rollenske, Sönke (2018). "On the history of the Hopf problem". Differential Geometry and Its Applications. 57: 1–9. arXiv:1708.01068. doi:10.1016/j.difgeo.2017.10.014. S2CID 119297359.

References

Read other articles:

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

 

 

العلاقات الروسية الجزائرية   الجزائر   روسيا السفارات سفارة روسيا في الجزائر   السفير : ألكسندر زولوتوف   العنوان : 7, Chemin du Prince d'Annam, El-Biar, Alger, Algerie سفارة الجزائر في روسيا   العنوان : موسكو، كرابيفينسكي بيريولوك، 1А [1] تعديل مصدري - تعديل  ...

 

 

Serbian politician Nataša MićićНаташа МићићMićić in 2001President of SerbiaActingIn office29 December 2002 – 27 January 2004Prime MinisterZoran ĐinđićZoran ŽivkovićPreceded byMilan MilutinovićSucceeded byDragan Maršićanin (acting)President of the National Assembly of SerbiaIn office6 December 2001 – 27 January 2004Preceded byDragan MaršićaninSucceeded byDragan Maršićanin Personal detailsBorn (1965-11-02) 2 November 1965 (age 58)Titovo Už...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Neo-grotesque sans-serif typeface For the settlement in South Carolina, see Arial, South Carolina. For other uses, see Aerial (disambiguation), Ariel (disambiguation), and Ariaal. ArialCategorySans-serifClassificationNeo-grotesqueDesigner(s) Robin Nicholas Patricia Saunders[1] FoundryMonotype CorporationDate released1982[1]LicenseProprietaryDesign based on Monotype Grotesque Helvetica Venus VariationsArial Unicode MSMetrically compatible with Arimo Liberation Sans Helvetica Ar...

 

 

Lambang Provinsi Bengkulu Peta lokasi Provinsi Bengkulu di Indonesia Peta lokasi Kabupaten di Bengkulu Provinsi Bengkulu memiliki 9 kabupaten dan 1 kota dengan ibukota-nya Kota Bengkulu. Berikut daftar kabupaten dan/atau kota di Bengkulu No. Kabupaten/kota Ibu kota Bupati/wali kota luas wilayah (km2)[1] Jumlah penduduk (2022)[1] Kecamatan Kelurahan/desa Lambang Peta lokasi 1 Kabupaten Bengkulu Selatan Kota Manna Gusnan Mulyadi 1.219,22 170.931 11 16/142 2 Kabupaten Bengkulu T...

尤睦佳·泽登巴尔Юмжаагийн Цэдэнбал1970年代时的尤睦佳·泽登巴尔蒙古人民革命党中央委员会总书记任期1958年11月22日—1984年8月24日前任达希·丹巴(第一书记)继任姜巴·巴特蒙赫任期1940年4月8日—1954年4月4日前任达希·丹巴(第一书记)继任达希·丹巴(第一书记)蒙古人民共和國部長會議主席任期1952年1月26日—1974年6月11日前任霍尔洛·乔巴山继任姜巴·巴特蒙赫�...

 

 

  لمعانٍ أخرى، طالع زيلاند (توضيح). زيلاند   معلومات جغرافية   الإحداثيات 55°34′N 11°53′E / 55.57°N 11.89°E / 55.57; 11.89   [1] [2] الأرخبيل الدنمارك  المسطح المائي بحر البلطيق  المساحة 7031.30 كيلومتر مربع[3]  الطول 132 كيلومتر  العرض 116 كيلومتر  ال�...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

2020年夏季奥林匹克运动会马来西亚代表團马来西亚国旗IOC編碼MASNOC马来西亚奥林匹克理事会網站olympic.org.my(英文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員30參賽項目10个大项旗手开幕式:李梓嘉和吳柳螢(羽毛球)[1][2]閉幕式:潘德莉拉(跳水)[3]獎牌榜排名第74 金牌 銀牌 銅�...

 

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

 

Franz I của Thánh chế La Mãđược vẽ bởi Martin van Meytens, c. 1745Hoàng đế La Mã Thần thánhVua La Mã ĐứcVua ĐứcTại vị13 September 1745 – 18 August 1765Đăng quang4 October 1745, FrankfurtTiền nhiệmKarl VIIKế nhiệmJoseph IIĐại Vương công ÁoTại vị21 November 1740 – 18 August 1765Co-monarchMaria Theresia ITiền nhiệmMaria Theresia IKế nhiệmJoseph IIĐại Công tước xứ ToscanaTại vị12 July 1737 – 18 August 1765Tiền nhi�...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 505th Command and Control Wing – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this message) 505th Command and Control Wing Active1947–1952; 1965–1973; 1980–presentCountry United StatesBranch United St...

 

 

State highway in Marysville, Washington, U.S. State Route 5284th Street64th StreetSR 528 highlighted in red.Route informationAuxiliary route of I-5Maintained by WSDOTLength3.46 mi[1] (5.57 km)Existed1964[2]–presentMajor junctionsWest end I-5 in MarysvilleMajor intersections SR 529 in MarysvilleEast end SR 9 in Marysville LocationCountryUnited StatesStateWashingtonCountySnohomish Highway system State highways in Washington Interstate US...

 

 

American politician and baseball player (1839–1906) For his son, see Arthur Pue Gorman Jr. Senator Gorman redirects here. For other uses, see Senator Gorman (disambiguation). Arthur P. GormanGorman c. 1899Chairman of the Senate Democratic CaucusIn officeMarch 4, 1903 – June 4, 1906Preceded byJames Kimbrough JonesSucceeded byJoseph Clay Stiles BlackburnIn officeMay 3, 1890 – April 1898Preceded byJames B. BeckSucceeded byDavid TurpieUnited States Senatorfrom MarylandIn o...

Racial group Not to be confused with Africans in Turkey. Ethnic group Afro-TurksAfrikalı TürklerTotal populationBetween 5,000 and 20,000[1] [2]Regions with significant populationsMuğla, İzmir, Antalya, Istanbul, Aydın, Denizli, Manisa, Mersin, AdanaLanguagesTurkishReligionIslam Afro-Turks (Turkish: Afrikalı Türkler) are Turkish people of African Zanj descent, who trace their origin to the Ottoman slave trade like the Afro-Abkhazians. Afro-Turk population is estimated to...

 

 

Stefan Posch Posch with Austria U21 in 2017Informasi pribadiNama lengkap Stefan PoschTanggal lahir 14 Mei 1997 (umur 27)Tempat lahir Judenburg, AustriaTinggi 188 m (616 ft 10 in)Posisi bermain DefenderInformasi klubKlub saat ini 1899 HoffenheimNomor 38Karier junior Tus Kraubath DSV Leoben Grazer AK AKA HIB Liebenau Sturm Graz0000–2014 Admira Wacker2015–2016 1899 HoffenheimKarier senior*Tahun Tim Tampil (Gol)2014–2015 Admira Wacker Amateure 28 (4)2016– 1899 Hoffenh...

 

 

Claudio Caniggia Caniggia bermain untuk Atalanta pada 1999Informasi pribadiNama lengkap Claudio Paul CaniggiaTanggal lahir 9 Januari 1967 (umur 57)Tempat lahir Henderson, Buenos Aires, ArgentinaTinggi 175 m (574 ft 2 in)Posisi bermain Forward / WingerKarier senior*Tahun Tim Tampil (Gol)1985–1988 River Plate 53 (8)1988–1989 Hellas Verona 21 (3)1989–1992 Atalanta 85 (26)1992–1994 Roma 15 (4)1994–1995 Benfica 23 (8)1995–1998 Boca Juniors 74 (32)1999–2000 Atalan...

  لمعانٍ أخرى، طالع نادي الصقور (توضيح). نادي الصقور السعودي شعار نادي الصقور السعودي البلد السعودية  المقر الرئيسي الرياض تاريخ التأسيس 2017 منطقة الخدمة  السعودية الرئيس عبد العزيز بن سعود بن نايف آل سعود الموقع الرسمي موقع النادي الإلكتروني، حسابهم في تويتر تعد�...

 

 

Aramaic elaboration of Esther Rabbinic literatureTalmud Readers by Adolf Behrman Talmudic literature Tannaitic Mishnah Tosefta Amoraic (Gemara) Jerusalem Talmud Babylonian Talmud Later Minor Tractates Halakhic Midrash Exodus Mekhilta of Rabbi Ishmael Mekhilta of Rabbi Shimon bar Yochai Leviticus Sifra (Torat Kohanim) Numbers and Deuteronomy Sifre Sifrei Zutta on Numbers (Mekhilta le-Sefer Devarim) Aggadic Midrash Tannaitic Seder Olam Rabbah Alphabet of Rabbi Akiva Baraita of the Forty-nine Ru...