Interior product

In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product is sometimes written as [1]

Definition

The interior product is defined to be the contraction of a differential form with a vector field. Thus if is a vector field on the manifold then is the map which sends a -form to the -form defined by the property that for any vector fields

When is a scalar field (0-form), by convention.

The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms where is the duality pairing between and the vector Explicitly, if is a -form and is a -form, then The above relation says that the interior product obeys a graded Leibniz rule. An operation satisfying linearity and a Leibniz rule is called a derivation.

Properties

If in local coordinates the vector field is given by

then the interior product is given by where is the form obtained by omitting from .

By antisymmetry of forms, and so This may be compared to the exterior derivative which has the property

The interior product with respect to the commutator of two vector fields satisfies the identity Proof. For any k-form , and similarly for the other result.

Cartan identity

The interior product relates the exterior derivative and Lie derivative of differential forms by the Cartan formula (also known as the Cartan identity, Cartan homotopy formula[2] or Cartan magic formula):

where the anticommutator was used. This identity defines a duality between the exterior and interior derivatives. Cartan's identity is important in symplectic geometry and general relativity: see moment map.[3] The Cartan homotopy formula is named after Élie Cartan.[4]

Proof by direct computation [5]

Since vector fields are locally integrable, we can always find a local coordinate system such that the vector field corresponds to the partial derivative with respect to the first coordinate, i.e., .

By linearity of the interior product, exterior derivative, and Lie derivative, it suffices to prove the Cartan's magic formula for monomial -forms. There are only two cases:

Case 1: . Direct computation yields:

Case 2: . Direct computation yields:

Proof by abstract algebra, credited to Shiing-Shen Chern[4]

The exterior derivative is an anti-derivation on the exterior algebra. Similarly, the interior product with a vector field is also an anti-derivation. On the other hand, the Lie derivative is a derivation.

The anti-commutator of two anti-derivations is a derivation.

To show that two derivations on the exterior algebra are equal, it suffices to show that they agree on a set of generators. Locally, the exterior algebra is generated by 0-forms (smooth functions ) and their differentials, exact 1-forms (). Verify Cartan's magic formula on these two cases.

See also

  • Cap product – Method in algebraic topology
  • Inner product – Generalization of the dot product; used to define Hilbert spaces
  • Tensor contraction – Operation in mathematics and physics

Notes

  1. ^ The character ⨼ is U+2A3C INTERIOR PRODUCT in Unicode
  2. ^ Tu, Sec 20.5.
  3. ^ There is another formula called "Cartan formula". See Steenrod algebra.
  4. ^ a b Is "Cartan's magic formula" due to Élie or Henri?, MathOverflow, 2010-09-21, retrieved 2018-06-25
  5. ^ Elementary Proof of the Cartan Magic Formula, Oleg Zubelevich

References

  • Theodore Frankel, The Geometry of Physics: An Introduction; Cambridge University Press, 3rd ed. 2011
  • Loring W. Tu, An Introduction to Manifolds, 2e, Springer. 2011. doi:10.1007/978-1-4419-7400-6

Read other articles:

Be-200 Altair Beriev Be-200ChS Jenis Pesawat amfibi multiperan Negara asal Rusia Pembuat Pabrik Taganrog Beriev Perancang Beriev Penerbangan perdana 24 September 1998 Diperkenalkan 31 Juli 2003; 20 tahun lalu (2003-07-31) Status Beroperasi, dalam produksi[1] Pengguna utama EMERCOM Fövqəladə Hallar Nazirliyi Jumlah 19[2] Dikembangkan dari Beriev A-40 Beriev Be-200 Altair (Rusia: Бериев Бе-200) adalah pesawat amfibi sayap tinggi (high wing) serbaguna yang d...

 

Mohammad Idham Samawi Anggota Dewan Perwakilan Rakyat Republik Indonesia Daerah Pemilihan Daerah Istimewa YogyakartaPetahanaMulai menjabat 20 Oktober 2015PresidenSusilo Bambang Yudhoyono Joko Widodo PendahuluDjuwartoEddy MihatiPenggantiPetahanaDaerah pemilihanDaerah Istimewa YogyakartaMayoritas120.796Bupati BantulMasa jabatan1999–2010PresidenAbdurrahman Wahid Megawati Soekarnoputri Susilo Bambang YudhoyonoGubernurSri Sultan Hamengkubuwono XWakilSumarno PendahuluDrs. H. Kismosukirdo (Pej...

 

State agency responsible for astronomical research and the application of space technology Bangladesh Space Research and Remote Sensing OrganizationAgency overviewAbbreviationSPARRSOFormed1980; 44 years ago (1980)TypeSpace agencyHeadquartersAgargaon, Sher-e-Bangla Nogor, Dhaka, BangladeshOwnerBangladeshWebsitewww.sparrso.gov.bd Headquarter The Bangladesh Space Research and Remote Sensing Organization (Bengali: বাংলাদেশ মহাকাশ গবেষণা �...

Shopping center in Atlanta, Georgia, United States Stewart-Lakewood Center in 2018 Crossroads Shopping Center, better known by its name in its heyday, Stewart-Lakewood Center, is an open-air shopping center on Metropolitan Parkway (formerly Stewart Avenue) at Langford Parkway (formerly Lakewood Freeway) in the Sylvan Hills neighborhood of southern Atlanta. It was built in 1962 by the same company and in the same style as Ansley Mall near Midtown Atlanta. It was considered a major regional ret...

 

American college football season 1933 Texas Longhorns footballConferenceSouthwest ConferenceRecord4–5–2 (2–3–1 SWC)Head coachClyde Littlefield (7th season)Home stadiumWar Memorial StadiumSeasons← 19321934 → 1933 Southwest Conference football standings vte Conf Overall Team W   L   T W   L   T Arkansas 4 – 1 – 0 7 – 3 – 1 TCU 4 – 2 – 0 9 – 2 – 1 Baylor 4 – 2 – 0 6 – 4 &...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. RedLink CommunicationsJenisPenyedia layanan internetDidirikan2008; 16 tahun lalu (2008)PendiriShane Thu Aung, Min Swe Hlaing, Thein Than ToeKantorpusatYangon, MyanmarWilayah operasiSeluruh negeriJasaAkses internet kecepatan tinggi kabel dan nirka...

Peta yang menunjukkan letak Santa Maria Data sensus penduduk di Santa Maria Tahun Populasi Persentase 1995101.071—2000144.2827.94%2007205.2584.98% Untuk kegunaan lain, lihat Santa Maria. Santa Maria adalah munisipalitas di provinsi Bulacan, Filipina. Pada tahun 2007, munisipalitas ini memiliki populasi sebesar 205.258 jiwa. Pembagian wilayah Secara politis Santa Maria terbagi atas 24 barangay, yaitu: No. Barangay Peringkat Populasi(2000) Populasi(2007) Kepadatanpenduduk(2007) Rata-ratapertu...

 

Miss Polski 2022 is the 33rd edition of Miss Polski held on July 17, 2022.[1][2][3] Agata Wdowiak of Łódź crowned Aleksandra Klepaczka of Łódź as her successor at the end of the event.[4] 33rd Miss Polski pageant Miss Polski 2022DateJuly 17, 2022VenueStrzelecki Park Amphitheater, Nowy Sącz, Małopolska, PolandBroadcasterPolsatEntrants24Placements10WithdrawalsLubuszReturnsLublinMasoviaWarmia-MasuriaPolish community in the USWinnerAleksandra Klepaczka Ł�...

 

Alison Krauss pada tahun 2007 Alison Krauss (lahir 23 Juli 1971) adalah seorang penyanyi bluegrass-country dan pemain Biola asal Amerika Serikat. Ia telah berkecimpung di dunia Musik sejak usia awal. Alison pertama kali menandatangani kontrak pada usia empat belas tahun dan pada tahun 1987 merilis album perdananya. Kemudian ia diundang masuk ke sebuah band yang sampai sekarang masih menjadi anggota Alison Krauss + Union Station (AKUS). Album perdana grup ini dirilis pada tahun 1989. Sampai ta...

Questa voce sull'argomento centri abitati del New Jersey è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. North Bergentownship(EN) North Bergen Township, New Jersey North Bergen – VedutaWoodcliff Avenue LocalizzazioneStato Stati Uniti Stato federato New Jersey ConteaHudson AmministrazioneSindacoNicholas Sacco TerritorioCoordinate40°47′39″N 74°01′30″W / 40.794167°N 7...

 

Премия «Золотой глобус» за лучшую женскую роль в драматическом фильме — престижная награда Голливудской ассоциации иностранной прессы, присуждаемая ежегодно с 1944 года. Первоначально категория носила название «Лучшая женская роль в художественном фильме». С 1951...

 

1969 literary criticism by Lin Carter Tolkien: A Look Behind The Lord of the Rings AuthorLin CarterCountryUnited StatesLanguageEnglishGenreLiterary criticismPublisherBallantine BooksPublication date1969Pages211 pp.Followed byLovecraft: A Look Behind the Cthulhu Mythos  Tolkien: A Look Behind The Lord of the Rings, alternatively subtitled A joyous exploration of Tolkien's classic trilogy and of the glorious tradition from which it grew is a 1969 non-scholarly[1] study of the ...

Federal constituency of Kedah, Malaysia Malaysian electoral constituency Pokok Sena (P008) Kedah constituencyFederal constituencyLegislatureDewan RakyatMPAhmad Saad YahayaPNConstituency created1994First contested1995Last contested2022DemographicsPopulation (2020)[1]133,057Electors (2023)[2]115,258Area (km²)[3]322Pop. density (per km²)413.2 Pokok Sena is a federal constituency in Pokok Sena District and Kota Setar District, Kedah, Malaysia, that has been represented i...

 

1950–1994 social movement in South Africa Internal resistance to apartheidPart of the decolonisation of AfricaNelson Mandela burns his passbook in 1960 as part of a civil disobedience campaign.Date4 June 1948 – 10 May 1994(45 years, 11 months and 6 days)[note 1]LocationSouth AfricaResult Military stalemate between MK and South African security forces[2][3] Bilateral negotiations to end apartheid[4] Abolition of apartheid in 1991 Dissolution o...

 

Peter GethinPeter Gethin al GP d'Olanda 1971Nazionalità Regno Unito Automobilismo CategoriaFormula 1 Termine carriera1977 CarrieraCarriera in Formula 1Stagioni1970-1974 Scuderie McLaren BRM Lola Miglior risultato finale9º (1971) GP disputati31 (30 partenze) GP vinti1 Podi1 Punti ottenuti11   Modifica dati su Wikidata · Manuale Peter Kenneth Gethin (Ewell, 21 febbraio 1940 – Goodwood, 5 dicembre 2011) è stato un pilota automobilistico britannico. Nel 1970 so...

Periodo Epoca Piano Età (Ma) Quaternario Pleistocene Gelasiano Più recente Neogene Pliocene Piacenziano 2,588–3,600 Zancleano 3,600–5,332 Miocene Messiniano 5,332–7,246 Tortoniano 7,246–11,608 Serravalliano 11,608–13,82 Langhiano 13,82–15,97 Burdigaliano 15,97–20,43 Aquitaniano 20,43–23,03 Paleogene Oligocene Chattiano Più antico Suddivisione del Neogene secondo la Commissione internazionale di stratigrafia dell'IUGS.[1] Ipotetica ricostruzione museale della f...

 

Questa voce sull'argomento attori austriaci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Ilka Grüning nel film Casablanca (1942) Ilka Grüning (Vienna, 4 settembre 1876 – Los Angeles, 11 novembre 1964) è stata un'attrice austriaca. Filmografia parziale Complotto (Die Verschwörung zu Genua), regia di Paul Leni (1921) Die Fledermaus, regia di Max Mack (1923) Finanze del granduca (Der Finanzes of Grossehersz), regia di Friedrich Wilhelm Murnau (1...

 

Stone circle in Cork, Ireland Drombeg stone circleCiorcal an Droma BhigDrombeg site, looking southLocation of site in IrelandAlternative nameDruid's AltarLocationCounty Cork, IrelandIrish Grid: W245352)Coordinates51°33′52″N 9°05′13″W / 51.56456°N 9.08702°W / 51.56456; -9.08702TypeAxial stone circleArea9.3 metres (31 ft) (diameter)Height1.8 metres (5 ft 11 in) (highest stone)HistoryPeriodsBronze Age[1] to early Iron Age[2]...

В Википедии есть статьи о других людях с такой фамилией, см. Лагорио. Лев Феликсович Лагорио Лев Лагорио. Ок. 1900 г. Дата рождения 17 (29) ноября 1827 или 16 (28) июня 1827[1] Место рождения Феодосия, Таврическая губерния, Российская империя Дата смерти 9 (22) декабря 1905 (78 лет) М...

 

Railway station in Kostrzyn nad Odrą, Poland KostrzynRailway StationKostrzyn railway stationGeneral informationLocationKostrzyn nad Odrą, Lubusz VoivodeshipPolandCoordinates52°35′29″N 14°38′50″E / 52.5915°N 14.6472°E / 52.5915; 14.6472Operated byPKP Polregio Arriva/Niederbarnimer EisenbahnLine(s)203: Tczew–Kostrzyn railway 273: Wrocław–Szczecin railway 410: Grzmiąca–Kostrzyn railway (closed)Platforms5Other informationFare zoneVBB: 5375[1]H...