Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.

Definition

The exterior derivative of a differential form of degree k (also differential k-form, or just k-form for brevity here) is a differential form of degree k + 1.

If f is a smooth function (a 0-form), then the exterior derivative of f is the differential of f. That is, df is the unique 1-form such that for every smooth vector field X, df (X) = dXf, where dXf is the directional derivative of f in the direction of X.

The exterior product of differential forms (denoted with the same symbol ) is defined as their pointwise exterior product.

There are a variety of equivalent definitions of the exterior derivative of a general k-form.

In terms of axioms

The exterior derivative is defined to be the unique -linear mapping from k-forms to (k + 1)-forms that has the following properties:

  • The operator applied to the -form is the differential of
  • If and are two -forms, then for any field elements
  • If is a -form and is an -form, then (graded product rule)
  • If is a -form, then (Poincare's lemma)

If and are two -forms (functions), then from the third property for the quantity , which is simply , the familiar product rule is recovered. The third property can be generalised, for instance, if is a -form, is an -form and is an -form, then

In terms of local coordinates

Alternatively, one can work entirely in a local coordinate system (x1, ..., xn). The coordinate differentials dx1, ..., dxn form a basis of the space of one-forms, each associated with a coordinate. Given a multi-index I = (i1, ..., ik) with 1 ≤ ipn for 1 ≤ pk (and denoting dxi1 ∧ ... ∧ dxik with dxI), the exterior derivative of a (simple) k-form

over n is defined as

(using the Einstein summation convention). The definition of the exterior derivative is extended linearly to a general k-form (which is expressible as a linear combination of basic simple -forms)

where each of the components of the multi-index I run over all the values in {1, ..., n}. Note that whenever j equals one of the components of the multi-index I then dxjdxI = 0 (see Exterior product).

The definition of the exterior derivative in local coordinates follows from the preceding definition in terms of axioms. Indeed, with the k-form φ as defined above,

Here, we have interpreted g as a 0-form, and then applied the properties of the exterior derivative.

This result extends directly to the general k-form ω as

In particular, for a 1-form ω, the components of in local coordinates are

Caution: There are two conventions regarding the meaning of . Most current authors[citation needed] have the convention that

while in older text like Kobayashi and Nomizu or Helgason

In terms of invariant formula

Alternatively, an explicit formula can be given [1] for the exterior derivative of a k-form ω, when paired with k + 1 arbitrary smooth vector fields V0, V1, ..., Vk:

where [Vi, Vj] denotes the Lie bracket and a hat denotes the omission of that element:

In particular, when ω is a 1-form we have that (X, Y) = dX(ω(Y)) − dY(ω(X)) − ω([X, Y]).

Note: With the conventions of e.g., Kobayashi–Nomizu and Helgason the formula differs by a factor of 1/k + 1:

Examples

Example 1. Consider σ = udx1dx2 over a 1-form basis dx1, ..., dxn for a scalar field u. The exterior derivative is:

The last formula, where summation starts at i = 3, follows easily from the properties of the exterior product. Namely, dxidxi = 0.

Example 2. Let σ = udx + vdy be a 1-form defined over 2. By applying the above formula to each term (consider x1 = x and x2 = y) we have the sum

Stokes' theorem on manifolds

If M is a compact smooth orientable n-dimensional manifold with boundary, and ω is an (n − 1)-form on M, then the generalized form of Stokes' theorem states that

Intuitively, if one thinks of M as being divided into infinitesimal regions, and one adds the flux through the boundaries of all the regions, the interior boundaries all cancel out, leaving the total flux through the boundary of M.

Further properties

Closed and exact forms

A k-form ω is called closed if = 0; closed forms are the kernel of d. ω is called exact if ω = for some (k − 1)-form α; exact forms are the image of d. Because d2 = 0, every exact form is closed. The Poincaré lemma states that in a contractible region, the converse is true.

de Rham cohomology

Because the exterior derivative d has the property that d2 = 0, it can be used as the differential (coboundary) to define de Rham cohomology on a manifold. The k-th de Rham cohomology (group) is the vector space of closed k-forms modulo the exact k-forms; as noted in the previous section, the Poincaré lemma states that these vector spaces are trivial for a contractible region, for k > 0. For smooth manifolds, integration of forms gives a natural homomorphism from the de Rham cohomology to the singular cohomology over . The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.

Naturality

The exterior derivative is natural in the technical sense: if f : MN is a smooth map and Ωk is the contravariant smooth functor that assigns to each manifold the space of k-forms on the manifold, then the following diagram commutes

so d( fω) =  f, where f denotes the pullback of f. This follows from that fω(·), by definition, is ω( f(·)), f being the pushforward of f. Thus d is a natural transformation from Ωk to Ωk+1.

Exterior derivative in vector calculus

Most vector calculus operators are special cases of, or have close relationships to, the notion of exterior differentiation.

Gradient

A smooth function f : M → ℝ on a real differentiable manifold M is a 0-form. The exterior derivative of this 0-form is the 1-form df.

When an inner product ⟨·,·⟩ is defined, the gradient f of a function f is defined as the unique vector in V such that its inner product with any element of V is the directional derivative of f along the vector, that is such that

That is,

where denotes the musical isomorphism  : VV mentioned earlier that is induced by the inner product.

The 1-form df is a section of the cotangent bundle, that gives a local linear approximation to f in the cotangent space at each point.

Divergence

A vector field V = (v1, v2, ..., vn) on n has a corresponding (n − 1)-form

where denotes the omission of that element.

(For instance, when n = 3, i.e. in three-dimensional space, the 2-form ωV is locally the scalar triple product with V.) The integral of ωV over a hypersurface is the flux of V over that hypersurface.

The exterior derivative of this (n − 1)-form is the n-form

Curl

A vector field V on n also has a corresponding 1-form

Locally, ηV is the dot product with V. The integral of ηV along a path is the work done against V along that path.

When n = 3, in three-dimensional space, the exterior derivative of the 1-form ηV is the 2-form

Invariant formulations of operators in vector calculus

The standard vector calculus operators can be generalized for any pseudo-Riemannian manifold, and written in coordinate-free notation as follows:

where is the Hodge star operator, and are the musical isomorphisms, f is a scalar field and F is a vector field.

Note that the expression for curl requires to act on d(F), which is a form of degree n − 2. A natural generalization of to k-forms of arbitrary degree allows this expression to make sense for any n.

See also

Notes

  1. ^ Spivak(1970), p 7-18, Th. 13

References

  • Cartan, Élie (1899). "Sur certaines expressions différentielles et le problème de Pfaff". Annales Scientifiques de l'École Normale Supérieure. Série 3 (in French). 16. Paris: Gauthier-Villars: 239–332. doi:10.24033/asens.467. ISSN 0012-9593. JFM 30.0313.04. Retrieved 2 Feb 2016.
  • Conlon, Lawrence (2001). Differentiable manifolds. Basel, Switzerland: Birkhäuser. p. 239. ISBN 0-8176-4134-3.
  • Darling, R. W. R. (1994). Differential forms and connections. Cambridge, UK: Cambridge University Press. p. 35. ISBN 0-521-46800-0.
  • Flanders, Harley (1989). Differential forms with applications to the physical sciences. New York: Dover Publications. p. 20. ISBN 0-486-66169-5.
  • Loomis, Lynn H.; Sternberg, Shlomo (1989). Advanced Calculus. Boston: Jones and Bartlett. pp. 304–473 (ch. 7–11). ISBN 0-486-66169-5.
  • Ramanan, S. (2005). Global calculus. Providence, Rhode Island: American Mathematical Society. p. 54. ISBN 0-8218-3702-8.
  • Spivak, Michael (1971). Calculus on Manifolds. Boulder, Colorado: Westview Press. ISBN 9780805390216.
  • Spivak, MIchael (1970), A Comprehensive Introduction to Differential Geometry, vol. 1, Boston, MA: Publish or Perish, Inc, ISBN 0-914098-00-4
  • Warner, Frank W. (1983), Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer, ISBN 0-387-90894-3

Read other articles:

Untuk tempat yang bernama Villeneuve, secara keseluruhan atau sebagiannya, lihat Villeneuve. Lambang Komune Villeneuve-sur-Bellot. Villeneuve-sur-BellotNegaraPrancisArondisemenProvinsKantonRebaisAntarkomunetidak ada pada 2007Pemerintahan • Wali kota (2008-2014) Jean-Claude Laplaige • Populasi11.070Kode INSEE/pos77512 / 2 Population sans doubles comptes: penghitungan tunggal penduduk di komune lain (e.g. mahasiswa dan personil militer). Villeneuve-sur-Bellot merupa...

 

 

Setelah bencana nuklir Fukushima, Jepang 2011, pemerintah menutup sekitar 54 pembangkit listrik tenaga nuklir milik negara. Pada 2013, situs Fukushima tetap radioaktif, dengan sekitar 160.000 pengungsi yang masih tinggal di pengungsian sementara. Meskipun tidak ada yang meninggal atau diperkirakan meninggal akibat efek radiasi, pekerjaan pembersihan yang sulit akan memakan waktu lebih dari 40, dan akan menelan biaya puluhan miliar dolar.[1][2] Jalur kontaminasi radioaktif dari...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2018) ساو خوسيه دي ريبامار   ساو خوسيه دي ريبامار  خريطة الموقع تقسيم إداري البلد البرازيل  [1] التقسيم الأعلى مارانهاو  خصائص جغرافية إحداثيات 2°33′4...

Untuk kegunaan lain, lihat IPA. Asosiasi Fonetik Internasional International Phonetic AssociationSingkatanIPATanggal pendirian1886PendiriPaul PassyTipeOrganisasi privatTujuanStudi ilmiah ilmu fonetikKantor pusat24 Holborn Viaduct, London, InggrisBahasa resmi Tidak ada secara peraturan[1] Inggris secara de facto[2]PemimpinMichael Ashby[3]Tokoh pentingDaniel JonesPeter LadefogedBadan utamaJournal of the International Phonetic AssociationSitus webAsosiasi Fonetik Internas...

 

 

Metro station in Barcelona, Spain Hospital de BellvitgeBarcelona Metro rapid transit stationSeries 4000 train at Hospital de Bellvitge stationGeneral informationLocationL'Hospitalet de LlobregatCoordinates41°20′36″N 2°6′19″E / 41.34333°N 2.10528°E / 41.34333; 2.10528Owned byTransports Metropolitans de BarcelonaConstructionStructure typeUndergroundOther informationFare zone1 (ATM)HistoryOpened1989; 35 years ago (1989)Services Preceding stat...

 

 

Study of individual descent and bloodline This article is about the study of family lineage, history and bloodline. For the philosophical technique developed by Nietzsche and Foucault, see Genealogy (philosophy). For the sociocultural evolution of kinship, see History of the family. For family trees of scholars according to mentoring relationship, see Academic genealogy.For other uses, see Genealogy (disambiguation). Family history redirects here. For medical family history, see Family histor...

Football league seasonPrimera DivisiónSeason1993–94Dates10 September 1993 – 28 August 1994Champions Apertura: River Plate(25th. title) Clausura: Independiente(15th. title) 1995 Copa LibertadoresRiver Plate Independiente1994 Copa CONMEBOLSan Lorenzo Huracán Lanús← 1992–93 1994–95 → The 1993–94 Argentine Primera División was a season of top-flight professional football in Argentina. The league season had two champions, with River Plate winning the Apertura (25th. league title ...

 

 

This article is about the metropolitan area. For the geographic area, see Mahoning Valley (geographic). Metropolitan Statistical Area in Ohio, United StatesMahoning Valley Youngstown–Warren, OH Metropolitan Statistical AreaMetropolitan Statistical AreaDowntown Youngstown as viewed from Wean ParkMap of Youngstown–Warren–Salem, OH CSA   Youngstown–Warren MSA   Salem µSA   City of Youngstown   City of Warren CountryUnited StatesStateOhioLarg...

 

 

Series of first- and third-person Star Wars video games This article is about the video game series. For other uses, see Star Wars: Battlefront (disambiguation). Video game seriesStar Wars: BattlefrontLogo under Electronic ArtsGenre(s)First-person shooter Third-person shooterDeveloper(s)Pandemic Studios(2004–05)Free Radical Design(2006–08)Rebellion Developments(2007–09)Slant Six Games(2009–10)LucasArts(2008–13)EA DICE(since 2013)Criterion Games(2016–2017)Motive Studios(since 2017)...

Davide Nicola Nicola nel 2018 Nazionalità  Italia Altezza 177 cm Calcio Ruolo Allenatore (ex difensore) Squadra  Empoli Termine carriera 1º luglio 2010 - giocatore CarrieraGiovanili 1989-1993 GenoaSquadre di club1 1993-1994→  Fidelis Andria26 (0)1994-1995→  Ancona27 (0)1995-1998 Genoa94 (0)1998-1999→  Pescara7 (0)1999-2002 Genoa72 (4)2002-2004 Ternana94 (5)2004-2005 Siena15 (0)2005-2006 Torino35 (1)2006-2007 Spezia28 (0)2007...

 

 

Pour les articles homonymes, voir Soi (homonymie). La notion de soi revêt plusieurs sens. La réalité de ce qui est (la chose en soi en philosophie). L'image que l'on se fait de sa propre individualité (l'ego au regard du Moi). La réalité individuelle à travers le self (psychanalyse). L'entièreté psychique de l'archétype du Soi (psychologie analytique). Enfin, le Soi comme Être suprême, centre éternel de la conscience aux fondements essentiels et à l'appartenance commune dans la...

 

 

GLP-1 dan diabetes. GLP-1 (bahasa Inggris: Glucagon like peptide 1) adalah hormon yang dihasilkan oleh sel L pada saluran pencernaan dari produk transkripsi gen proglukagon, dan digolongkan sebagai inkretin. Seperti juga Glukagon, GLP-1 mengalami proteolisis terbatas dalam proses sintesanya. Bentuk aktif dari hormon ini adalah GLP-1-(7-37) dan GLP-1-(7-36)NH2. Stimulus (bahasa Inggris: secretagogue) untuk sekresi hormon ini adalah keberadaan zat nutrisi pada lumen usus halus, khususny...

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

East Timorese politician Cirilo CristóvãoCirilo Cristóvão in 20176th Minister of DefenseIn office16 February 2015 – 3 October 2017PresidentTaur Matan Ruak Francisco GuterresPrime MinisterRui Maria de AraújoPreceded byXanana GusmãoSucceeded byJosé Agostinho Sequeira Personal detailsBornCirilo José Jacob Valadares Cristóvão(1966-03-20)20 March 1966Fuiloro, Portuguese TimorDied20 October 2019(2019-10-20) (aged 53)Denpasar, Bali, IndonesiaPolitical partyNational Congress...

20th Governor of Oregon Julius MeierMeier in 191120th Governor of OregonIn officeJanuary 12, 1931 – January 14, 1935Preceded byA. W. NorbladSucceeded byCharles Martin Personal detailsBorn(1874-12-31)December 31, 1874Portland, Oregon, U.S.DiedJuly 14, 1937(1937-07-14) (aged 62)Corbett, Oregon, U.S.Political partyRepublican (before 1930)Independent (1930–1937)Spouse Grace Mayer ​(m. 1901)​EducationUniversity of Oregon (LLB) Julius L. Meier (Decembe...

 

 

This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (August 2023)This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Neela goddess – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove th...

 

 

American baseball player (1906-1958) Baseball player Bill PerkinsCatcherBorn: (1906-06-26)June 26, 1906Dawson, GeorgiaDied: January 24, 1958(1958-01-24) (aged 51)Birmingham, AlabamaBatted: RightThrew: RightNegro league baseball debut1928, for the Birmingham Black BaronsLast appearance1948, for the Baltimore Elite Giants Teams Birmingham Black Barons (1928, 1930, 1945) Brooklyn Royal Giants (1929) Cleveland Cubs (1931) Baltimore Black Sox (1931) Pittsburgh Crawfords (1...

新开发银行New Development Bank新开发银行总部大楼,位于中国上海市簡稱NDB成立時間2013年提出創始人金砖国家類型国际组织法律地位协议,《福塔莱萨宣言》總部上海市 地址 中华人民共和国上海市浦东新区国展路1600号會員 巴西 俄羅斯 印度 中华人民共和国 南非 阿联酋 乌拉圭 孟加拉国 埃及隸屬金砖国家应急储备基金行长迪尔玛·罗�...

 

 

Pour les articles homonymes, voir Élection présidentielle de 2013. 2006 2015 Élection présidentielle italienne de 2013 18 avril 2013 (1er et 2e tours)19 avril 2013 (3e et 4e tours)20 avril 2013 (5e et 6e tours) Type d’élection Présidentielle Corps électoral et résultats Inscrits 1 007 Résultats du 6e et dernier tour Giorgio Napolitano – Indépendant Voix 738 74,02 %  Stefano Rodotà – Indépendant Voix 217 21,76 %  Pr�...