Antiderivative

The slope field of , showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral[Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f.[1][2] The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

Antiderivatives are related to definite integrals through the second fundamental theorem of calculus: the definite integral of a function over a closed interval where the function is Riemann integrable is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.

In physics, antiderivatives arise in the context of rectilinear motion (e.g., in explaining the relationship between position, velocity and acceleration).[3] The discrete equivalent of the notion of antiderivative is antidifference.

Examples

The function is an antiderivative of , since the derivative of is . Since the derivative of a constant is zero, will have an infinite number of antiderivatives, such as , etc. Thus, all the antiderivatives of can be obtained by changing the value of c in , where c is an arbitrary constant known as the constant of integration. The graphs of antiderivatives of a given function are vertical translations of each other, with each graph's vertical location depending upon the value c.

More generally, the power function has antiderivative if n ≠ −1, and if n = −1.

In physics, the integration of acceleration yields velocity plus a constant. The constant is the initial velocity term that would be lost upon taking the derivative of velocity, because the derivative of a constant term is zero. This same pattern applies to further integrations and derivatives of motion (position, velocity, acceleration, and so on).[3] Thus, integration produces the relations of acceleration, velocity and displacement:

Uses and properties

Antiderivatives can be used to compute definite integrals, using the fundamental theorem of calculus: if F is an antiderivative of the continuous function f over the interval , then:

Because of this, each of the infinitely many antiderivatives of a given function f may be called the "indefinite integral" of f and written using the integral symbol with no bounds:

If F is an antiderivative of f, and the function f is defined on some interval, then every other antiderivative G of f differs from F by a constant: there exists a number c such that for all x. c is called the constant of integration. If the domain of F is a disjoint union of two or more (open) intervals, then a different constant of integration may be chosen for each of the intervals. For instance

is the most general antiderivative of on its natural domain

Every continuous function f has an antiderivative, and one antiderivative F is given by the definite integral of f with variable upper boundary: for any a in the domain of f. Varying the lower boundary produces other antiderivatives, but not necessarily all possible antiderivatives. This is another formulation of the fundamental theorem of calculus.

There are many elementary functions whose antiderivatives, even though they exist, cannot be expressed in terms of elementary functions. Elementary functions are polynomials, exponential functions, logarithms, trigonometric functions, inverse trigonometric functions and their combinations under composition and linear combination. Examples of these nonelementary integrals are

  • the error function
  • the Fresnel function
  • the sine integral
  • the logarithmic integral function and
  • sophomore's dream

For a more detailed discussion, see also Differential Galois theory.

Techniques of integration

Finding antiderivatives of elementary functions is often considerably harder than finding their derivatives (indeed, there is no pre-defined method for computing indefinite integrals).[4] For some elementary functions, it is impossible to find an antiderivative in terms of other elementary functions. To learn more, see elementary functions and nonelementary integral.

There exist many properties and techniques for finding antiderivatives. These include, among others:

Computer algebra systems can be used to automate some or all of the work involved in the symbolic techniques above, which is particularly useful when the algebraic manipulations involved are very complex or lengthy. Integrals which have already been derived can be looked up in a table of integrals.

Of non-continuous functions

Non-continuous functions can have antiderivatives. While there are still open questions in this area, it is known that:

  • Some highly pathological functions with large sets of discontinuities may nevertheless have antiderivatives.
  • In some cases, the antiderivatives of such pathological functions may be found by Riemann integration, while in other cases these functions are not Riemann integrable.

Assuming that the domains of the functions are open intervals:

  • A necessary, but not sufficient, condition for a function f to have an antiderivative is that f have the intermediate value property. That is, if [a, b] is a subinterval of the domain of f and y is any real number between f(a) and f(b), then there exists a c between a and b such that f(c) = y. This is a consequence of Darboux's theorem.
  • The set of discontinuities of f must be a meagre set. This set must also be an F-sigma set (since the set of discontinuities of any function must be of this type). Moreover, for any meagre F-sigma set, one can construct some function f having an antiderivative, which has the given set as its set of discontinuities.
  • If f has an antiderivative, is bounded on closed finite subintervals of the domain and has a set of discontinuities of Lebesgue measure 0, then an antiderivative may be found by integration in the sense of Lebesgue. In fact, using more powerful integrals like the Henstock–Kurzweil integral, every function for which an antiderivative exists is integrable, and its general integral coincides with its antiderivative.
  • If f has an antiderivative F on a closed interval , then for any choice of partition if one chooses sample points as specified by the mean value theorem, then the corresponding Riemann sum telescopes to the value . However, if f is unbounded, or if f is bounded but the set of discontinuities of f has positive Lebesgue measure, a different choice of sample points may give a significantly different value for the Riemann sum, no matter how fine the partition. See Example 4 below.

Some examples

  1. The function

    with is not continuous at but has the antiderivative

    with . Since f is bounded on closed finite intervals and is only discontinuous at 0, the antiderivative F may be obtained by integration: .
  2. The function with is not continuous at but has the antiderivative with . Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined.
  3. If f(x) is the function in Example 1 and F is its antiderivative, and is a dense countable subset of the open interval then the function has an antiderivative The set of discontinuities of g is precisely the set . Since g is bounded on closed finite intervals and the set of discontinuities has measure 0, the antiderivative G may be found by integration.
  4. Let be a dense countable subset of the open interval Consider the everywhere continuous strictly increasing function It can be shown that
    Figure 1.
    Figure 2.

    for all values x where the series converges, and that the graph of F(x) has vertical tangent lines at all other values of x. In particular the graph has vertical tangent lines at all points in the set .

    Moreover for all x where the derivative is defined. It follows that the inverse function is differentiable everywhere and that

    for all x in the set which is dense in the interval Thus g has an antiderivative G. On the other hand, it can not be true that

    since for any partition of , one can choose sample points for the Riemann sum from the set , giving a value of 0 for the sum. It follows that g has a set of discontinuities of positive Lebesgue measure. Figure 1 on the right shows an approximation to the graph of g(x) where and the series is truncated to 8 terms. Figure 2 shows the graph of an approximation to the antiderivative G(x), also truncated to 8 terms. On the other hand if the Riemann integral is replaced by the Lebesgue integral, then Fatou's lemma or the dominated convergence theorem shows that g does satisfy the fundamental theorem of calculus in that context.
  5. In Examples 3 and 4, the sets of discontinuities of the functions g are dense only in a finite open interval However, these examples can be easily modified so as to have sets of discontinuities which are dense on the entire real line . Let Then has a dense set of discontinuities on and has antiderivative
  6. Using a similar method as in Example 5, one can modify g in Example 4 so as to vanish at all rational numbers. If one uses a naive version of the Riemann integral defined as the limit of left-hand or right-hand Riemann sums over regular partitions, one will obtain that the integral of such a function g over an interval is 0 whenever a and b are both rational, instead of . Thus the fundamental theorem of calculus will fail spectacularly.
  7. A function which has an antiderivative may still fail to be Riemann integrable. The derivative of Volterra's function is an example.

Basic formulae

  • If , then .

See also

Notes

  1. ^ Antiderivatives are also called general integrals, and sometimes integrals. The latter term is generic, and refers not only to indefinite integrals (antiderivatives), but also to definite integrals. When the word integral is used without additional specification, the reader is supposed to deduce from the context whether it refers to a definite or indefinite integral. Some authors define the indefinite integral of a function as the set of its infinitely many possible antiderivatives. Others define it as an arbitrarily selected element of that set. This article adopts the latter approach. In English A-Level Mathematics textbooks one can find the term complete primitive - L. Bostock and S. Chandler (1978) Pure Mathematics 1; The solution of a differential equation including the arbitrary constant is called the general solution (or sometimes the complete primitive).

References

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2.
  3. ^ a b "4.9: Antiderivatives". Mathematics LibreTexts. 2017-04-27. Retrieved 2020-08-18.
  4. ^ "Antiderivative and Indefinite Integration | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-08-18.

Further reading

Read other articles:

Terellia ceratocera Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Diptera Famili: Tephritidae Spesies: Terellia ceratocera Terellia ceratocera adalah spesies lalat yang tergolong famili Tephritidae. Spesies ini juga merupakan bagian dari ordo Diptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Kebanyakan anggota spesies ini bertelur dalam jaringan tumbuhan, tempat larva menemukan makanan pertamanya setelah lahir. Lalat dewasa biasanya berumur sangat...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Konten dan perspektif penulisan artikel ini tidak menggambarkan wawasan global pada subjeknya. Silakan bantu mengembangkan atau bicarakan artikel ini di halaman pembicaraannya, atau buat artikel baru, bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) (Pela...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الدوري البولندي الممتاز Ekstraklasa الموسم 2015–2016 البلد بولندا  المنظم اتحاد بولندا لكرة القدم  النسخة 82 ...

Pour les articles homonymes, voir 30e corps d'armée. 30e corps d'armée Création 21 janvier 1916 Pays France Branche Armée de Terre Type corps d'armée Ancienne dénomination Secteur nord de la Région fortifiée de Verdun Guerres Première Guerre mondiale Batailles 1916 - Bataille de Verdun(Bois des Caures)1918 - 3e Bataille de l'Aisne1918 - 2e bataille de la Marne(Bataille du Soissonnais)(Bataille du Tardenois)1918 - 2e Bataille de Noyon1918 - Poussée vers la position Hindenb...

 

Halaman ini berisi artikel tentang pegulat. Untuk tokoh lainnya dengan nama yang sama, lihat Sushil Kumar. Sushil KumarSushil Kumar pada 2014Informasi pribadiKewarganegaraanIndiaLahir26 Mei 1983 (umur 40)[1]Baprola, Delhi, IndiaTinggi166 cm (5 ft 5 in)[2] OlahragaNegaraIndiaOlahragaGulatLombaGaya bebasKlubNIS, DelhiDilatih olehGyan Singh, Rajkumar Baisla Gurjar Rekam medali Mewakili  India Permainan Olimpiade 2008 Beijing Gaya bebas 66 kg 2012 London G...

 

Manuscript fragments from 32BC–640AD found in an Egyptian rubbish dump Grenfell (left) and Hunt (right) in about 1896 Oxyrhynchusclass=notpageimage| Site where the Oxyrhynchus Papyri were discovered Excavations at Oxyrhynchus 1, c. 1903. The Oxyrhynchus Papyri are a group of manuscripts discovered during the late nineteenth and early twentieth centuries by papyrologists Bernard Pyne Grenfell and Arthur Surridge Hunt at an ancient rubbish dump near Oxyrhynchus in Egypt (28°32′N 30°...

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

Pour les articles homonymes, voir Quatre-Juillet. Éphémérides Juillet 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         4 juin 4 août Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du jour mod...

 

Asep Effendi Rektor Universitas Sangga Buana YPKPMasa jabatan2010 – 2022Pendahulu-Pengganti- Informasi pribadiLahir(1963-04-28)28 April 1963 Bandung, Jawa BaratKebangsaanIndonesiaPartai politik-Alma mater-Pekerjaan-ProfesiRektorSitus web--Sunting kotak info • L • B Dr. H. Asep Effendi, SE., M.Si., PIA., CFrA., CRBC (lahir 28 April 1963) adalah seorang Rektor di Universitas Sangga Buana YPKP. Masa Kecil Asep Effendi terlahir di lingkungan keluarga yang agamis. Sejak du...

نظام ويندوز الفرعي للينكسمعلومات عامةنوع مكون في نظام تشغيل مايكروسوفت ويندوز النظام الفرعي البيئي نظام التشغيل ويندوز 10ويندوز 11 النموذج المصدري حقوق التأليف والنشر محفوظة المطورون مايكروسوفت المدونة الرسمية devblogs.microsoft.com… (الإنجليزية) موقع الويب learn.microsoft.com… (الإنجليز�...

 

Vase de Pompéi. L'alimentation dans la Rome antique évolue au fil des siècles. Fortement liée, au début, à la consommation de bouillies de céréales, elle évolue en fonction des conquêtes territoriales. Elle se distingue des habitudes grecques. Sources historiques Les données archéologiques Les fouilles de Pompéi et Herculanum La destruction de villes romaines par l'éruption du Vésuve de 79 permet d'obtenir des renseignements qui, autrement, n'auraient pas résisté au temps. Il...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rochester Area Colleges – news · newspapers · books · scholar · JSTOR (May 2024) (Learn how and when to rem...

Municipality in Gjirokastër, AlbaniaKëlcyrëMunicipality EmblemKëlcyrëCoordinates: 40°18′47″N 20°11′31″E / 40.313°N 20.192°E / 40.313; 20.192Country AlbaniaCountyGjirokastërGovernment • MayorKlement Ndoni (PS)Area • Municipality304.86 km2 (117.71 sq mi)Elevation176 m (577 ft)Population (2011) • Municipality6,113 • Municipality density20/km2 (52/sq mi) • ...

 

1969 pop/soul song by the Jackson 5 This article is about the Jackson 5 song. For other uses, see I Want You Back (disambiguation). I Want You BackGermany vinyl singleSingle by the Jackson 5from the album Diana Ross Presents The Jackson 5 B-sideWho's Lovin YouReleasedOctober 1969 (US)[1]RecordedJuly–September 1969StudioThe Sound Factory, West HollywoodGenrePopsoulLength2:59LabelMotown M 1157Songwriter(s) The Corporation – (Berry Gordy Freddie Perren Alphonso Mizell Deke Richards)&...

 

Sharia (/ʃəˈriːə/; tiếng Ả Rập: شَرِيعَة‎, chuyển tự sharīʻa [ʃaˈriːʕa]), là luật tôn giáo hình thành ra một phần của truyền thống Hồi giáo.[1][2] Nó có nguồn gốc từ các giới luật tôn giáo của Hồi giáo, đặc biệt là Kinh Qur'an và hadith. Trong tiếng Ả Rập, thuật ngữ sharīʿah dùng để chỉ luật thiêng liêng bất biến của Đức Chúa Trời và tương phản v�...

Modified Longhurst biogeographic provinces from Djavidnia et al.  [1] Longhurst code refers to a set of geospatial four-letter geocodes for referencing geographic regions in oceanography. The set of 56 geocodes represent biogeochemical provinces that partition the pelagic environment. It is assumed that each province represents a unique set of environmental conditions.[2] They are named after Alan R. Longhurst, the author of Ecological Geography of the Sea, the textbook...

 

LỊCH SỬ THÁI LAN Thời tiền sử Thời sơ sử Trước khi người Thái tới   Raktamaritika    Langkasuka    Srivijaya    Tambralinga    Dvaravati    Lavo    Supannabhum    Hariphunchai   Phù Nam   Đế quốc Khmer Những nhà nước Thái đầu tiên   Singhanavati - Lan Na - Nan - Phayao   Ka...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (novembre 2008). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? ...

Professor of psychology Eleanor RoschBornEleanor Rosch (1938-07-09) 9 July 1938 (age 86)EducationHarvard (Ph.D.)Scientific careerFieldsCognitive science, psychology, philosophyInstitutionsUniversity of California, BerkeleyBrown UniversityConnecticut College Eleanor Rosch (once known as Eleanor Rosch Heider;[1] born 9 July 1938[2])[3] is an American psychologist. She is a professor of psychology at the University of California, Berkeley,[4] specializing in ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tanah Datar, Pekanbaru Kota, Pekanbaru – berita · surat kabar · buku · cendekiawan · JSTOR Tanah DatarKelurahanNegara IndonesiaProvinsiRiauKotaPekanbaruKecamatanPekanbaru KotaKode Kemendagri14.71.02...