Euler–Maclaurin formula

In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.

The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals. It was later generalized to Darboux's formula.

The formula

If m and n are natural numbers and f(x) is a real or complex valued continuous function for real numbers x in the interval [m,n], then the integral can be approximated by the sum (or vice versa) (see rectangle method). The Euler–Maclaurin formula provides expressions for the difference between the sum and the integral in terms of the higher derivatives f(k)(x) evaluated at the endpoints of the interval, that is to say x = m and x = n.

Explicitly, for p a positive integer and a function f(x) that is p times continuously differentiable on the interval [m,n], we have where Bk is the kth Bernoulli number (with B1 = 1/2) and Rp is an error term which depends on n, m, p, and f and is usually small for suitable values of p.

The formula is often written with the subscript taking only even values, since the odd Bernoulli numbers are zero except for B1. In this case we have[1][2] or alternatively

The remainder term

The remainder term arises because the integral is usually not exactly equal to the sum. The formula may be derived by applying repeated integration by parts to successive intervals [r, r + 1] for r = m, m + 1, …, n − 1. The boundary terms in these integrations lead to the main terms of the formula, and the leftover integrals form the remainder term.

The remainder term has an exact expression in terms of the periodized Bernoulli functions Pk(x). The Bernoulli polynomials may be defined recursively by B0(x) = 1 and, for k ≥ 1, The periodized Bernoulli functions are defined as where x denotes the largest integer less than or equal to x, so that x − ⌊x always lies in the interval [0,1).

With this notation, the remainder term Rp equals

When k > 0, it can be shown that for 0 ≤ x ≤ 1, where ζ denotes the Riemann zeta function; one approach to prove this inequality is to obtain the Fourier series for the polynomials Bk(x). The bound is achieved for even k when x is zero. The term ζ(k) may be omitted for odd k but the proof in this case is more complex (see Lehmer).[3] Using this inequality, the size of the remainder term can be estimated as

Low-order cases

The Bernoulli numbers from B1 to B7 are 1/2, 1/6, 0, −1/30, 0, 1/42, 0. Therefore, the low-order cases of the Euler–Maclaurin formula are:

Applications

The Basel problem

The Basel problem is to determine the sum

Euler computed this sum to 20 decimal places with only a few terms of the Euler–Maclaurin formula in 1735. This probably convinced him that the sum equals π2/6, which he proved in the same year.[4]

Sums involving a polynomial

If f is a polynomial and p is big enough, then the remainder term vanishes. For instance, if f(x) = x3, we can choose p = 2 to obtain, after simplification,

Approximation of integrals

The formula provides a means of approximating a finite integral. Let a < b be the endpoints of the interval of integration. Fix N, the number of points to use in the approximation, and denote the corresponding step size by h = ba/N − 1. Set xi = a + (i − 1)h, so that x1 = a and xN = b. Then:[5]

This may be viewed as an extension of the trapezoid rule by the inclusion of correction terms. Note that this asymptotic expansion is usually not convergent; there is some p, depending upon f and h, such that the terms past order p increase rapidly. Thus, the remainder term generally demands close attention.[5]

The Euler–Maclaurin formula is also used for detailed error analysis in numerical quadrature. It explains the superior performance of the trapezoidal rule on smooth periodic functions and is used in certain extrapolation methods. Clenshaw–Curtis quadrature is essentially a change of variables to cast an arbitrary integral in terms of integrals of periodic functions where the Euler–Maclaurin approach is very accurate (in that particular case the Euler–Maclaurin formula takes the form of a discrete cosine transform). This technique is known as a periodizing transformation.

Asymptotic expansion of sums

In the context of computing asymptotic expansions of sums and series, usually the most useful form of the Euler–Maclaurin formula is

where a and b are integers.[6] Often the expansion remains valid even after taking the limits a → −∞ or b → +∞ or both. In many cases the integral on the right-hand side can be evaluated in closed form in terms of elementary functions even though the sum on the left-hand side cannot. Then all the terms in the asymptotic series can be expressed in terms of elementary functions. For example,

Here the left-hand side is equal to ψ(1)(z), namely the first-order polygamma function defined by

the gamma function Γ(z) is equal to (z − 1)! when z is a positive integer. This results in an asymptotic expansion for ψ(1)(z). That expansion, in turn, serves as the starting point for one of the derivations of precise error estimates for Stirling's approximation of the factorial function.

Examples

If s is an integer greater than 1 we have:

Collecting the constants into a value of the Riemann zeta function, we can write an asymptotic expansion:

For s equal to 2 this simplifies to or

When s = 1, the corresponding technique gives an asymptotic expansion for the harmonic numbers: where γ ≈ 0.5772... is the Euler–Mascheroni constant.

Proofs

Derivation by mathematical induction

We outline the argument given in Apostol.[1]

The Bernoulli polynomials Bn(x) and the periodic Bernoulli functions Pn(x) for n = 0, 1, 2, ... were introduced above.

The first several Bernoulli polynomials are

The values Bn(1) are the Bernoulli numbers Bn. Notice that for n ≠ 1 we have and for n = 1,

The functions Pn agree with the Bernoulli polynomials on the interval [0, 1] and are periodic with period 1. Furthermore, except when n = 1, they are also continuous. Thus,

Let k be an integer, and consider the integral where

Integrating by parts, we get

Using B1(0) = −1/2, B1(1) = 1/2, and summing the above from k = 0 to k = n − 1, we get

Adding f(n) − f(0)/2 to both sides and rearranging, we have

This is the p = 1 case of the summation formula. To continue the induction, we apply integration by parts to the error term: where

The result of integrating by parts is

Summing from k = 0 to k = n − 1 and substituting this for the lower order error term results in the p = 2 case of the formula,

This process can be iterated. In this way we get a proof of the Euler–Maclaurin summation formula which can be formalized by mathematical induction, in which the induction step relies on integration by parts and on identities for periodic Bernoulli functions.

See also

References

  1. ^ a b Apostol, T. M. (1 May 1999). "An Elementary View of Euler's Summation Formula". The American Mathematical Monthly. 106 (5). Mathematical Association of America: 409–418. doi:10.2307/2589145. ISSN 0002-9890. JSTOR 2589145.
  2. ^ "Digital Library of Mathematical Functions: Sums and Sequences". National Institute of Standards and Technology.
  3. ^ Lehmer, D. H. (1940). "On the maxima and minima of Bernoulli polynomials". The American Mathematical Monthly. 47 (8): 533–538. doi:10.2307/2303833. JSTOR 2303833.
  4. ^ Pengelley, David J. (2007). "Dances between continuous and discrete: Euler's summation formula". Euler at 300. MAA Spectrum. Washington, DC: Mathematical Association of America. pp. 169–189. arXiv:1912.03527. MR 2349549.
  5. ^ a b Devries, Paul L.; Hasbrun, Javier E. (2011). A first course in computational physics (2nd ed.). Jones and Bartlett Publishers. p. 156.
  6. ^ Abramowitz, Milton; Stegun, Irene A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications. pp. 16, 806, 886. ISBN 978-0-486-61272-0.

Further reading

Read other articles:

Pembantu Letnan Dua KKOEvert Julius Vence Kandou Informasi pribadiLahir(1937-05-18)18 Mei 1937[1]Kebumen, Jawa TengahMeninggal4 September 2020(2020-09-04) (umur 83)Banyuwangi, Jawa TimurKarier militerPihak IndonesiaDinas/cabang TNI Angkatan LautPangkat Pembantu Letnan DuaSatuanKKO (IPAM)PenghargaanBintang Kartika Eka PaksiSunting kotak info • L • B Pembantu Letnan Dua KKO (Purn.) Evert Julius Vence Kandou atau lebih akrab dengan nama E.J. Ven Kandou (18 Mei 193...

 

 

Berikut daftar Kepala Daerah dan Wakil Kepala Daerah di 10 kabupaten/kota di Maluku Utara adalah: Kabupaten/Kota Foto Bupati/Wali Kota Bupati/Wali Kota Foto Wakil Bupati/Wali Kota Wakil Bupati/Wali Kota Mulai Menjabat Selesai Menjabat(Direncanakan) Ref KabupatenHalmahera BaratDaftar Bupati/Wakil Bupati James Uang Djufri Muhammad 26 Februari 2021 31 Desember 2024 [1] KabupatenHalmahera SelatanDaftar Bupati/Wakil Bupati Hasan Ali Bassam Kasuba 15 Desember 2023 31 Desember 2024 [2 ...

 

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

  لمعانٍ أخرى، طالع مقاطعة ماكون (توضيح). مقاطعة ماكون     الإحداثيات 39°50′N 92°34′W / 39.83°N 92.56°W / 39.83; -92.56  [1] تاريخ التأسيس 1837  سبب التسمية ناثانيل ماكون  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى ميزوري  العاصمة ميكون...

 

 

العلاقات البحرينية المدغشقرية البحرين مدغشقر   البحرين   مدغشقر تعديل مصدري - تعديل   العلاقات البحرينية المدغشقرية هي العلاقات الثنائية التي تجمع بين البحرين ومدغشقر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...

 

 

Daylight savings time in the central European time zone Time in Europe: Light Blue Western European Time / Greenwich Mean Time (UTC) Blue Western European Time / Greenwich Mean Time (UTC) Western European Summer Time / British Summer Time / Irish Standard Time (UTC+1) Red Central European Time (UTC+1) Central European Summer Time (UTC+2) Yellow Eastern European Time / Kaliningrad Time (UTC+2) Ochre Eastern European Time (UTC+2) Eastern European Summer Time (UTC+3) Green Moscow Time / Turkey T...

Расизм в России — проявление расизма жителями России по отношению к представителям других рас или этнических групп[1][2]. Расизм является идеологической основой для насильственных акций, число жертв которых достигло пика в 716 человек в 2007 году[3]. Правитель�...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Online web archive For a guide to using archive.today within Wikipedia, see Help:Using archive.today. archive.todayScreenshot of the archive.today home pageType of siteWeb archivingAvailable inMultilingualURL archive.today archive.fo archive.is archive.li archive.md archive.ph archive.vn archiveiya74codqgiixo33q62qlrqtkgmcitqx5u2oeqnmn5bpcbiyd.onion (Accessing link help)[1] RegistrationNoLaunchedMay 16, 2012; 11 years ago (2012-05-16)[2] archive.today (o...

Cruiser of the Royal Navy For other ships with the same name, see HMS Dauntless. History United Kingdom NameHMS Dauntless OrderedSeptember 1916 BuilderPalmers Shipbuilding and Iron Company, Jarrow Laid down3 January 1917 Launched10 April 1918 Commissioned22 November 1918 IdentificationPennant number:D45 FateBroken up April 1946 General characteristics Class and typeDanae-class light cruiser Displacement4,650 tons Length471 ft (144 m) Beam46 ft (14 m) Draught14.5 ft (4...

 

 

Stasiun Takao高尾駅Stasiun Takao pada Mei 2005LokasiNeo Takao, Motosu-shi, Gifu-ken 501-1528JepangKoordinat35°36′05″N 136°37′33″E / 35.60139°N 136.62583°E / 35.60139; 136.62583Koordinat: 35°36′05″N 136°37′33″E / 35.60139°N 136.62583°E / 35.60139; 136.62583Operator Tarumi RailwayJalur■ Jalur TarumiLetak30.5 km dari ŌgakiJumlah peron1 peron sampingJumlah jalur1Informasi lainStatusTanpa stafSitus webSitus web resmi (da...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Tentara JoseonLambang tentara JoseonAktifAbad ke-14-1897Negara KoreaAliansi Raja JoseonCabangPengawal kerajaanTentara pusatTentara dan milisi provinsiTipe unitTentaraPeranPertempuran daratJumlah personel84,500 (1592)87,600 (1640-an)Dibubarkan13 Oktober 1897InsigniaBendera Tentara Joseon (Korean: 조선군대; Hanja: 朝鮮軍隊) adalah tentara dinasti Joseon di Korea. Tentara mempertahankan perbatasan utara tetapi jarang mempertahankan wilayah selatan. Tentara terkenal karena menangkis ...

 

 

Hecht MuseumDidirikan1984LokasiHaifa, IsraelSitus webHecht Museum Peti mati antropoida dari Zaman Perunggu Muda yang ditemukan di Deir al-Balah Reuben and Edith Hecht Museum atau dikenal sebagai Hecht Museum adalah sebuah museum yang terletak dibealam lingkungan Universitas Haifa,[1] Israel. Sejarah Perahu Ma'agan Michael Hecht Museum didirikan pada tahun 1984 oleh Reuben Hecht,[1] direktur Dagon Silos dan merupakan anggota pendiri University of Haifa Board of Governors. Selam...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

2013 Indian filmKili PoyiMovie posterDirected byVinay GovindScreenplay byJoseph KurianVivek RanjitVinay GovindProduced bySiby ThottupuramJoby MundamattomStarringAsif AliAju VargheseSampath RajRaveendranSreejith RaviCinematographyPradheesh M. VarmaEdited byMahesh NarayanMusic byRahul RajProductioncompanySJM EntertainmentsDistributed bySJM EntertainmentsRelease date 1 March 2013 (2013-03-01) Running time90 minutesCountryIndiaLanguageMalayalam Kili Poyi is a 2013 Indian Malayalam...

 

 

Norman Patrick Brown's immunity from prosecution order in exchange for his testimony in Leonard Peltier's criminal trial Immunity from prosecution is a doctrine of international law that allows an accused to avoid prosecution for criminal offences. Immunities are of two types. The first is functional immunity, or immunity ratione materiae. This is an immunity granted to people who perform certain functions of state. The second is personal immunity, or immunity ratione personae. This is an imm...

 

 

Il terrore di Frankensteinuno screenshot del trailer del filmTitolo originaleThe Ghost of Frankenstein Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno1942 Durata67 min Dati tecniciB/N Genereorrore, fantascienza RegiaErle C. Kenton SoggettoEric Taylor[1] SceneggiaturaScott Darling Casa di produzioneUniversal Pictures MusicheHans J. Salter ScenografiaJack Otterson TruccoJack Pierce Interpreti e personaggi Cedric Hardwicke: Dottor Ludwig Frankenstein Lon Chaney ...

Powdered gruel with a malted flavor For the type of biscuit, see Malted milk (biscuit). For the Robert Johnson song, see Robert Johnson. A Carnation-brand malted milk can Malted milk or malt powder is a powder made from a mixture of malted barley, wheat flour, and evaporated whole milk powder. The powder is used to add its distinctive flavor to beverages and other foods, but it is also used in baking to help dough cook properly. History William Horlick Explorer Ernest de Koven Leffingwell pos...

 

 

此條目可参照法語維基百科和英語維基百科相應條目来扩充。 (2019年8月28日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。   「突尼斯」重定向至此。关于该国首都,请见「突尼斯市」。关于其他用法,请见�...