Summation

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article.

The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands. Summation of a sequence of only one summand results in the summand itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0.

Very often, the elements of a sequence are defined, through a regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be represented with most summands replaced by ellipses. For example, summation of the first 100 natural numbers may be written as 1 + 2 + 3 + 4 + ⋯ + 99 + 100. Otherwise, summation is denoted by using Σ notation, where is an enlarged capital Greek letter sigma. For example, the sum of the first n natural numbers can be denoted as

For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result. For example,[a]

Although such formulas do not always exist, many summation formulas have been discovered—with some of the most common and elementary ones being listed in the remainder of this article.

Notation

Capital-sigma notation

The summation symbol

Mathematical notation uses a symbol that compactly represents summation of many similar terms: the summation symbol, , an enlarged form of the upright capital Greek letter sigma.[1] This is defined as

where i is the index of summation; ai is an indexed variable representing each term of the sum; m is the lower bound of summation, and n is the upper bound of summation. The "i = m" under the summation symbol means that the index i starts out equal to m. The index, i, is incremented by one for each successive term, stopping when i = n.[b]

This is read as "sum of ai, from i = m to n".

Here is an example showing the summation of squares:

In general, while any variable can be used as the index of summation (provided that no ambiguity is incurred), some of the most common ones include letters such as ,[c] , , and ; the latter is also often used for the upper bound of a summation.

Alternatively, index and bounds of summation are sometimes omitted from the definition of summation if the context is sufficiently clear. This applies particularly when the index runs from 1 to n.[2] For example, one might write that:

Generalizations of this notation are often used, in which an arbitrary logical condition is supplied, and the sum is intended to be taken over all values satisfying the condition. For example:

is an alternative notation for the sum of over all (integers) in the specified range. Similarly,

is the sum of over all elements in the set , and

is the sum of over all positive integers dividing .[d]

There are also ways to generalize the use of many sigma signs. For example,

is the same as

A similar notation is used for the product of a sequence, where , an enlarged form of the Greek capital letter pi, is used instead of

Special cases

It is possible to sum fewer than 2 numbers:

  • If the summation has one summand , then the evaluated sum is .
  • If the summation has no summands, then the evaluated sum is zero, because zero is the identity for addition. This is known as the empty sum.

These degenerate cases are usually only used when the summation notation gives a degenerate result in a special case. For example, if in the definition above, then there is only one term in the sum; if , then there is none.

Algebraic sum

The phrase 'algebraic sum' refers to a sum of terms which may have positive or negative signs. Terms with positive signs are added, while terms with negative signs are subtracted.

Formal definition

Summation may be defined recursively as follows:

, for ;
, for .

Measure theory notation

In the notation of measure and integration theory, a sum can be expressed as a definite integral,

where is the subset of the integers from to , and where is the counting measure over the integers.

Calculus of finite differences

Given a function f that is defined over the integers in the interval [m, n], the following equation holds:

This is known as a telescoping series and is the analogue of the fundamental theorem of calculus in calculus of finite differences, which states that:

where

is the derivative of f.

An example of application of the above equation is the following:

Using binomial theorem, this may be rewritten as:

The above formula is more commonly used for inverting of the difference operator , defined by:

where f is a function defined on the nonnegative integers. Thus, given such a function f, the problem is to compute the antidifference of f, a function such that . That is, This function is defined up to the addition of a constant, and may be chosen as[3]

There is not always a closed-form expression for such a summation, but Faulhaber's formula provides a closed form in the case where and, by linearity, for every polynomial function of n.

Approximation by definite integrals

Many such approximations can be obtained by the following connection between sums and integrals, which holds for any increasing function f:

and for any decreasing function f:

For more general approximations, see the Euler–Maclaurin formula.

For summations in which the summand is given (or can be interpolated) by an integrable function of the index, the summation can be interpreted as a Riemann sum occurring in the definition of the corresponding definite integral. One can therefore expect that for instance

since the right-hand side is by definition the limit for of the left-hand side. However, for a given summation n is fixed, and little can be said about the error in the above approximation without additional assumptions about f: it is clear that for wildly oscillating functions the Riemann sum can be arbitrarily far from the Riemann integral.

Identities

The formulae below involve finite sums; for infinite summations or finite summations of expressions involving trigonometric functions or other transcendental functions, see list of mathematical series.

General identities

(distributivity)[4]
(commutativity and associativity)[4]
(index shift)
for a bijection σ from a finite set A onto a set B (index change); this generalizes the preceding formula.
(splitting a sum, using associativity)
(a variant of the preceding formula)
(the sum from the first term up to the last is equal to the sum from the last down to the first)
(a particular case of the formula above)
(commutativity and associativity, again)
(another application of commutativity and associativity)
(splitting a sum into its odd and even parts, for even indexes)
(splitting a sum into its odd and even parts, for odd indexes)
(distributivity)
(distributivity allows factorization)
(the logarithm of a product is the sum of the logarithms of the factors)
(the exponential of a sum is the product of the exponential of the summands)
for any function from .

Powers and logarithm of arithmetic progressions

for every c that does not depend on i
(Sum of the simplest arithmetic progression, consisting of the first n natural numbers.)[3]: 52 
(Sum of first odd natural numbers)
(Sum of first even natural numbers)
(A sum of logarithms is the logarithm of the product)
(Sum of the first squares, see square pyramidal number.) [3]: 52 
(Nicomachus's theorem) [3]: 52 

More generally, one has Faulhaber's formula for

where denotes a Bernoulli number, and is a binomial coefficient.

Summation index in exponents

In the following summations, a is assumed to be different from 1.

(sum of a geometric progression)
(special case for a = 1/2)
(a times the derivative with respect to a of the geometric progression)
(sum of an arithmetico–geometric sequence)

Binomial coefficients and factorials

There exist very many summation identities involving binomial coefficients (a whole chapter of Concrete Mathematics is devoted to just the basic techniques). Some of the most basic ones are the following.

Involving the binomial theorem

the binomial theorem
the special case where a = b = 1
, the special case where p = a = 1 − b, which, for expresses the sum of the binomial distribution
the value at a = b = 1 of the derivative with respect to a of the binomial theorem
the value at a = b = 1 of the antiderivative with respect to a of the binomial theorem

Involving permutation numbers

In the following summations, is the number of k-permutations of n.

, where and denotes the floor function.

Others

Harmonic numbers

(the nth harmonic number)
(a generalized harmonic number)

Growth rates

The following are useful approximations (using theta notation):

for real c greater than −1
(See Harmonic number)
for real c greater than 1
for non-negative real c
for non-negative real c, d
for non-negative real b > 1, c, d

History

  • In 1772, usage of Σ and Σn is attested by Lagrange.[8][10]
  • In 1823, the capital letter S is attested as a summation symbol for series. This usage was apparently widespread.[8]
  • In 1829, the summation symbol Σ is attested by Fourier and C. G. J. Jacobi.[8] Fourier's use includes lower and upper bounds, for example:[11][12]

See also

Notes

  1. ^ For details, see Triangular number.
  2. ^ For a detailed exposition on summation notation, and arithmetic with sums, see Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1994). "Chapter 2: Sums". Concrete Mathematics: A Foundation for Computer Science (2nd ed.). Addison-Wesley Professional. ISBN 978-0201558029.
  3. ^ in contexts where there is no possibility of confusion with the imaginary unit
  4. ^ Although the name of the dummy variable does not matter (by definition), one usually uses letters from the middle of the alphabet ( through ) to denote integers, if there is a risk of confusion. For example, even if there should be no doubt about the interpretation, it could look slightly confusing to many mathematicians to see instead of in the above formulae involving .

References

  1. ^ Apostol, Tom M. (1967). Calculus. Vol. 1 (2nd ed.). USA: John Wiley & Sons. p. 37. ISBN 0-471-00005-1.
  2. ^ "Summation Notation". www.columbia.edu. Retrieved 2020-08-16.
  3. ^ a b c d Handbook of Discrete and Combinatorial Mathematics, Kenneth H. Rosen, John G. Michaels, CRC Press, 1999, ISBN 0-8493-0149-1.
  4. ^ a b "Calculus I - Summation Notation". tutorial.math.lamar.edu. Retrieved 2020-08-16.
  5. ^ Burton, David M. (2011). The History of Mathematics: An Introduction (7th ed.). McGraw-Hill. p. 414. ISBN 978-0-07-338315-6.
  6. ^ Leibniz, Gottfried Wilhelm (1899). Gerhardt, Karl Immanuel (ed.). Der Briefwechsel von Gottfried Wilhelm Leibniz mit Mathematikern. Erster Band. Berlin: Mayer & Müller. p. 154.
  7. ^ a b Cajori (1929), pp. 181-182.
  8. ^ a b c d Cajori (1929), p. 61.
  9. ^ Euler, Leonhard (1755). Institutiones Calculi differentialis (in Latin). Petropolis. p. 27.
  10. ^ Lagrange, Joseph-Louis (1867–1892). Oeuvres de Lagrange. Tome 3 (in French). Paris. p. 451.{{cite book}}: CS1 maint: location missing publisher (link)
  11. ^ Mémoires de l'Académie royale des sciences de l'Institut de France pour l'année 1825, tome VIII (in French). Paris: Didot. 1829. pp. 581-622.
  12. ^ Fourier, Jean-Baptiste Joseph (1888–1890). Oeuvres de Fourier. Tome 2 (in French). Paris: Gauthier-Villars. p. 149.

Bibliography

  • Media related to Summation at Wikimedia Commons

Read other articles:

Cette page concerne l'année 1614 du calendrier grégorien. Chronologies La carte dressée par Adriaen Block après l'expédition de 1614, qui mentionne pour la première fois la Nouvelle-Néerlande.Données clés 1611 1612 1613  1614  1615 1616 1617Décennies :1580 1590 1600  1610  1620 1630 1640Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gr...

 

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

 

Questa voce o sezione sugli argomenti storia economica e economia internazionale non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Il sistema aureo è un sistema monetario nel quale la base monetaria è data da una quantità fissata d'oro. Indice 1 Descrizione 1.1 Vantaggi 1.2 Svantaggi 2 Storia 2.1 Il sistema gold standard 2.2 Le principali monete nel gol...

История Грузииსაქართველოს ისტორია Доисторическая Грузия Шулавери-шомутепинская культураКуро-араксская культураТриалетская культураКолхидская культураКобанская культураДиаухиМушки Древняя история КолхидаАриан-КартлиИберийское царство ФарнавазидыГруз�...

 

 

Former social mobile photo and video-sharing website Not to be confused with Mobil. MobliMobli homescreenOwnerMoshe HogegURLwww.mobli.comLaunched2010Current statusInactive Mobli was a social mobile photo and video-sharing website founded by Israeli entrepreneurs and brothers Moshe and Oded Hogeg. As of 2016 the service was shut down and the company placed into bankruptcy. The Israel-based company had very high expectations to compete with similarly-purposed rivals Vine and Instagram.[...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

Pour les articles homonymes, voir Châteauneuf. Châteauneuf-de-Randon Vue générale de Châteauneuf-de-Randon. Blason Administration Pays France Région Occitanie Département Lozère Arrondissement Mende Intercommunalité Communauté de communes Randon - Margeride Maire Mandat Bruno Durand 2020-2026 Code postal 48170 Code commune 48043 Démographie Gentilé Castelrandonnais Populationmunicipale 523 hab. (2021 ) Densité 21 hab./km2 Géographie Coordonnées 44° 38′ 2...

 

 

Moroccan legal scholar This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Ibrahim ibn Hilal al-Sijilmasi – news · newspapers · books · scholar · JST...

 

 

Language of the Yuchi people in the southeastern United States YuchiEucheeTsoyahaNative toUnited StatesRegionEast central OklahomaEthnicity1,500 Yuchi (2007)[1]Native speakers0[2] (2021)12 L2 speakers (2016)[1]Language familyLanguage isolateLanguage codesISO 639-3yucGlottologyuch1247ELPYuchiDistribution of Yuchi at the time of European contactThis article contains IPA phonetic symbols. Without proper rendering support, you may see question marks, boxes, or ot...

Most populous county in the US and California LA County redirects here. For the equivalent of counties in Louisiana, see List of parishes in Louisiana. County in California, United StatesLos Angeles CountyCountyDowntown Los AngelesVeniceRodeo Drive in Beverly HillsSanta Catalina IslandSanta Monica PierAntelope Valley California Poppy ReserveHollywood Sign FlagSealLogoNickname(s): L.A. County, Metro-LA, Greater LAShow Los Angeles CountyShow CaliforniaShow the United StatesCoordinates: 34�...

 

 

Narumonda IVDesaGapura selamat datang di Desa Narumonda IVPeta lokasi Desa Narumonda IVNegara IndonesiaProvinsiSumatera UtaraKabupatenTobaKecamatanSiantar NarumondaKode pos22384Kode Kemendagri12.12.20.2004 Luas0,80 km²Jumlah penduduk616 jiwa (2015)Kepadatan770,00 jiwa/km² Narumonda IV adalah salah satu desa di Kecamatan Siantar Narumonda, Kabupaten Toba, Provinsi Sumatera Utara, Indonesia. Pemerintahan Kepala Desa Narumonda IV pada tahun 2020 adalah Sakkan Simangunsong.[1] Desa...

 

 

Cet article est une ébauche concernant l’aviron et une personnalité canadienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir McBean. Marnie McBean Contexte général Sport Aviron Site officiel marniemcbean.ca Biographie Nom dans la langue maternelle Marnie Elizabeth McBean Nationalité sportive Canada Nationalité Canada Naissance 28 janvier 1968 (56 ans) Lieu de nai...

River in Utrecht, NetherlandsLeidse RijnLeiden's RhineLeidse Rijn between Harmelen and De MeernLocation of Leidse Rijn in dark blue.LocationCountryNetherlandsProvinceUtrechtPhysical characteristicsSourceKromme Rijn • locationUtrecht, Utrecht • coordinates52°05′33″N 5°06′38″E / 52.09250°N 5.11056°E / 52.09250; 5.11056 MouthOude Rijn • locationHarmelen, South Holland • coordinates52°05′31...

 

 

Gráfico tridimensional del valor absoluto de la función gamma compleja Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son funciones que se definen sobre un subconjunto del plano complejo C {\displaystyle \mathbb {C} } y con valores en C {\displaystyle \mathbb {C} } , que son complejo-diferenciables en algún entorno de un punto de su dominio. En este caso se dice que la función es holomorfa en ese punto.[1]​ Si la función es holomorfa en cada pun...

 

 

SpongeBob SquarePantsMusim 5Sampul DVD SpongeBob SquarePants, Season 5 Volume 1Negara asalAmerika SerikatJml. episode20 (41)RilisJaringan asliNickelodeonTanggal disiarkan13 April 2007 (2007-04-13) –19 Juli 2009 (2009-7-19)Kronologi Musim← SebelumnyaMusim 4 Berikutnya →Musim 6 Daftar episode Musim kelima SpongeBob SquarePants pertama kali ditayangkan tanggal 19 Februari 2007 dengan episode Rise and Shine, Waiting dan Sing a Song of Patrick dan berakhir pada 19 Ju...

Тарас на Парнасе Жанр сатирическая поэма Автор Константин Вереницын Язык оригинала белорусский Дата написания 1855 Дата первой публикации 1889 «Тарас на Парнасе» (бел. Тарас на Парнасе; в ранней рукописи заголовок, возможно, авторский — Узлезшы на Парнас, што відзеў там Т...

 

 

2015 Japanese mobile video game You can help expand this article with text translated from the corresponding article in Japanese. (December 2020) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-tr...

 

 

Jón Daði Böðvarsson Jón Daði Böðvarsson bermain untuk Wolverhampton Wanderers. 2016Informasi pribadiNama lengkap Jón Daði BöðvarssonTanggal lahir 25 Mei 1992 (umur 32)Tempat lahir Selfoss, IslandiaTinggi 189 cm (6 ft 2 in)Posisi bermain GelandangInformasi klubKlub saat ini ReadingNomor 23Karier senior*Tahun Tim Tampil (Gol)2017 – Reading 33 (7)Tim nasional2012 – Islandia 39 (2) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Jón Dað...

Ingeniería Civil El Puente del Gran Belt, la Presa Hoover, el Burj Khalifa y la Autovía del Olivar son algunas de las construcciones que alteran el medio en el que vivimos.Áreas del saber Matemáticas, mecánica del medio continuo y ciencia de materiales, especialmente siderurgia y disciplinas relacionadas con el hormigónCampo de aplicación Construcción, infraestructuras, obras hidráulicas e infraestructura energética (hidroeléctricas y centrales térmicas), vías y transporte, aseso...

 

 

American college football season 1992 Virginia Tech Hokies footballConferenceBig East ConferenceRecord2–8–1 (1–4 Big East)Head coachFrank Beamer (6th season)Offensive coordinatorSteve Marshall (5th season)Offensive schemePro-styleDefensive coordinatorMike Clark (5th season)Base defense4–4Home stadiumLane StadiumSeasons← 19911993 → 1992 Big East Conference football standings vte Conf Overall Team W   L   T W   L   ...