Carl Gustav Jacob Jacobi

Carl Gustav Jacob Jacobi
Born(1804-12-10)10 December 1804
Died18 February 1851(1851-02-18) (aged 46)
Berlin, Kingdom of Prussia, German Confederation
Alma materUniversity of Berlin (PhD, Dr. habil.)
Known for
RelativesMoritz von Jacobi (brother)
Scientific career
FieldsMathematics
InstitutionsUniversity of Königsberg
University of Berlin
ThesisDisquisitiones Analyticae de Fractionibus Simplicibus (1825)
Doctoral advisorEnno Dirksen
Doctoral students
Other notable studentsGustav Kirchhoff

Carl Gustav Jacob Jacobi (/əˈkbi/;[2] German: [jaˈkoːbi]; 10 December 1804 – 18 February 1851)[a] was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants and number theory.

Biography

Jacobi was born of Ashkenazi Jewish parentage in Potsdam on 10 December 1804. He was the second of four children of a banker, Simon Jacobi. His elder brother, Moritz, would also become known later as an engineer and physicist. He was initially home schooled by his uncle Lehman, who instructed him in the classical languages and elements of mathematics. In 1816, the twelve-year-old Jacobi went to the Potsdam Gymnasium, where students were taught all the standard subjects: classical languages, history, philology, mathematics, sciences, etc. As a result of the good education he had received from his uncle, as well as his own remarkable abilities, after less than half a year Jacobi was moved to the senior year despite his young age. However, as the University would not accept students younger than 16 years old, he had to remain in the senior class until 1821. He used this time to advance his knowledge, showing interest in all subjects, including Latin, Greek, philology, history and mathematics. During this period he also made his first attempts at research, trying to solve the quintic equation by radicals.[4][5]

In 1821 Jacobi went to study at Berlin University, where he initially divided his attention between his passions for philology and mathematics. In philology, he participated in the seminars of Böckh, drawing the professor's attention with his talent. Jacobi did not follow a lot of mathematics classes at the time, finding the level of mathematics taught at Berlin University too elementary. He continued, instead, with his private study of the more advanced works of Euler, Lagrange and Laplace. By 1823 he understood that he needed to make a decision between his competing interests and chose to devote all his attention to mathematics.[6] In the same year he became qualified to teach secondary school and was offered a position at the Joachimsthal Gymnasium in Berlin. Jacobi decided instead to continue to work towards a university position. In 1825, he obtained the degree of Doctor of Philosophy with a dissertation on the partial fraction decomposition of rational fractions defended before a commission led by Enno Dirksen. He followed immediately with his habilitation and at the same time converted to Christianity. Now qualifying for teaching university classes, the 21-year-old Jacobi lectured in 1825/26 on the theory of curves and surfaces at the University of Berlin.[6][7]

In 1826, Jacobi became a private lecturer, in the next year an extraodinary professor, and in finally 1829, a tenured professor of mathematics at Königsberg University, and held the chair until 1842. He suffered a breakdown from overwork in 1843. He then visited Italy for a few months to regain his health. On his return he moved to Berlin, where he lived as a royal pensioner, apart from a very brief interim, until his death.[3] During the Revolution of 1848 Jacobi was politically involved and unsuccessfully presented his parliamentary candidature on behalf of a Liberal club. This led, after the suppression of the revolution, to his royal grant being cut off – but his fame and reputation were such that it was soon resumed, thanks to the personal intervention of Alexander von Humboldt.

Jacobi died in 1851 from a smallpox infection. His grave is preserved at a cemetery in the Kreuzberg section of Berlin, the Friedhof I der Dreifaltigkeits-Kirchengemeinde (61 Baruther Street). His grave is close to that of Johann Encke, the astronomer. The crater Jacobi on the Moon is named after him.

Scientific contributions

One of Jacobi's greatest accomplishments was his theory of elliptic functions and their relation to the elliptic theta function. This was developed in his great treatise Fundamenta nova theoriae functionum ellipticarum (1829), and in later papers in Crelle's Journal. Theta functions are of great importance in mathematical physics because of their role in the inverse problem for periodic and quasi-periodic flows. The equations of motion are integrable in terms of Jacobi's elliptic functions in the well-known cases of the pendulum, the Euler top, the symmetric Lagrange top in a gravitational field, and the Kepler problem (planetary motion in a central gravitational field).

He also made fundamental contributions in the study of differential equations and to classical mechanics, notably the Hamilton–Jacobi theory.

It was in algebraic development that Jacobi's particular power mainly lay, and he made important contributions of this kind in many areas of mathematics, as shown by his long list of papers in Crelle's Journal and elsewhere from 1826 onwards.[3] He is said to have told his students that when looking for a research topic, one should 'Invert, always invert' (German original: "man muss immer umkehren"), reflecting his belief that inverting known results can open up new fields for research, for example inverting elliptic integrals and focusing on the nature of elliptic and theta functions.[8]

In his 1835 paper, Jacobi proved the following basic result classifying periodic (including elliptic) functions:

If a univariate single-valued function is multiply periodic, then such a function cannot have more than two periods, and the ratio of the periods cannot be a real number.

He discovered many of the fundamental properties of theta functions, including the functional equation and the Jacobi triple product formula, as well as many other results on q-series and hypergeometric series.

The solution of the Jacobi inversion problem for the hyperelliptic Abel map by Weierstrass in 1854 required the introduction of the hyperelliptic theta function and later the general Riemann theta function for algebraic curves of arbitrary genus. The complex torus associated to a genus algebraic curve, obtained by quotienting by the lattice of periods is referred to as the Jacobian variety. This method of inversion, and its subsequent extension by Weierstrass and Riemann to arbitrary algebraic curves, may be seen as a higher genus generalization of the relation between elliptic integrals and the Jacobi or Weierstrass elliptic functions.

Carl Gustav Jacob Jacobi

Jacobi was the first to apply elliptic functions to number theory, for example proving Fermat's two-square theorem and Lagrange's four-square theorem, and similar results for 6 and 8 squares.

His other work in number theory continued the work of Gauss: new proofs of quadratic reciprocity, and the introduction of the Jacobi symbol; contributions to higher reciprocity laws, investigations of continued fractions, and the invention of Jacobi sums.

He was also one of the early founders of the theory of determinants.[9] In particular, he invented the Jacobian determinant formed from the n2 partial derivatives of n given functions of n independent variables, which plays an important part in changes of variables in multiple integrals, and in many analytical investigations.[3] In 1841 he reintroduced the partial derivative ∂ notation of Legendre, which was to become standard.

He was one of the first to introduce and study the symmetric polynomials that are now known as Schur polynomials, giving the so-called bialternant formula for these, which is a special case of the Weyl character formula, and deriving the Jacobi–Trudi identities. He also discovered the Desnanot–Jacobi formula for determinants, which underlie the Plücker relations for Grassmannians.

Students of vector fields, Lie theory, Hamiltonian mechanics and operator algebras often encounter the Jacobi identity, the analog of associativity for the Lie bracket operation.

Planetary theory and other particular dynamical problems likewise occupied his attention from time to time. While contributing to celestial mechanics, he introduced the Jacobi integral (1836) for a sidereal coordinate system. His theory of the last multiplier is treated in Vorlesungen über Dynamik, edited by Alfred Clebsch (1866).[3]

He left many manuscripts, portions of which have been published at intervals in Crelle's Journal. His other works include Commentatio de transformatione integralis duplicis indefiniti in formam simpliciorem (1832), Canon arithmeticus (1839), and Opuscula mathematica (1846–1857). His Gesammelte Werke (1881–1891) were published by the Berlin Academy.[3]

Publications

  • Fundamenta nova theoriae functionum ellipticarum (in Latin), Königsberg, 1829, ISBN 978-1-108-05200-9, Reprinted by Cambridge University Press 2012
  • Gesammelte Werke, Herausgegeben auf Veranlassung der Königlich Preussischen Akademie der Wissenschaften, vol. I–VIII (2nd ed.), New York: Chelsea Publishing Co., 1969 [1881], MR 0260557, archived from the original on 2013-05-13, retrieved 2012-03-20
  • Canon arithmeticus, sive tabulae quibus exhibentur pro singulis numeris primis vel primorum potestatibus infra 1000 numeri ad datos indices et indices ad datos numeros pertinentes, Berlin: Typis Academicis, Berolini, 1839, MR 0081559
  • "De formatione et proprietatibus Determinatium". Journal für die reine und angewandte Mathematik. 1841 (22): 285–318. 1841. doi:10.1515/crll.1841.22.285. ISSN 0075-4102. S2CID 123007787.
  • Pulte, Helmut, ed. (1996) [1848], Vorlesungen über analytische Mechanik, Dokumente zur Geschichte der Mathematik [Documents on the History of Mathematics], vol. 8, Freiburg: Deutsche Mathematiker Vereinigung, doi:10.1007/978-3-322-80289-7, ISBN 978-3-528-06692-5, MR 1414679
  • Vorlesungen über Zahlentheorie---Wintersemester 1836/37, Königsberg, Algorismus. Studien zur Geschichte der Mathematik und der Naturwissenschaften [Algorismus. Studies in the History of Mathematics and the Natural Sciences], vol. 62, Dr. Erwin Rauner Verlag, Augsburg, 2007 [1836], ISBN 978-3-936905-25-0, MR 2573816
  • Clebsch, A.; Balagangadharan, K.; Banerjee, Biswarup, eds. (2009) [1866], Jacobi's lectures on dynamics, Texts and Readings in Mathematics, vol. 51, New Delhi: Hindustan Book Agency, ISBN 9788185931913, MR 2569315
  • Ollivier, François; Cohn, Sigismund; Borchardt, C. W.; et al., eds. (2009) [1866], "The reduction to normal form of a non-normal system of differential equations" (PDF), Applicable Algebra in Engineering, Communication and Computing, Translation of De aequationum differentialium systemate non normali ad formam normalem revocando, 20 (1): 33–64, doi:10.1007/s00200-009-0088-2, ISSN 0938-1279, MR 2496660, S2CID 219629
  • Ollivier, François; Cohn, Sigismund; Borchardt., C. W., eds. (2009) [1865], "Looking for the order of a system of arbitrary ordinary differential equations" (PDF), Applicable Algebra in Engineering, Communication and Computing, Translation of De investigando ordine systematis æquationibus differentialium vulgarium cujuscunque, 20 (1): 7–32, doi:10.1007/s00200-009-0087-3, ISSN 0938-1279, MR 2496659, S2CID 20652724

See also

Notes

  1. ^ His given name is sometimes written as Karl Gustav Jakob.[3]

References

Citations

  1. ^ Aldrich 2017.
  2. ^ "Jacobi, Carl Gustav Jacob". Random House Webster's Unabridged Dictionary.
  3. ^ a b c d e f Chisholm 1911.
  4. ^ Koenigsberger 1904.
  5. ^ Pierpont 1906, pp. 261–262.
  6. ^ a b Dirichlet 1855, pp. 193–217.
  7. ^ James 2002, pp. 69–74.
  8. ^ Van Vleck 1916, pp. 1–13.
  9. ^ Jacobi 1841, pp. 285–318.

Sources

Read other articles:

Sertu Trida Shafira Asmaul Husna Arkeologi Kepala (timpanum) dari nekara Pejang ini dicor terpisah dari badannya. Bukti pertama penggunaan perunggu dan besi di Indonesia berasal dari tahun 500 Sebelum Masehi. Sebagian besar benda perunggu paling awal mungkin digunakan untuk upacara mis. kapak perunggu upacara dan nekara. Nekara-nekara ini datang dari Vietnam Utara dan memiliki bentuk spesifik yang dikenal dengan nama nekara Dong Son. Bersamaan dengan perdagangan di Asia Tenggara, nekara Dong ...

 

Untuk artikel tentang kecamatan di Kabupaten Magelang dengan nama sama, lihat Mungkid, Magelang. Kota MungkidIbu kota kabupatenLoka Wisata Candi MendhutPeta lokasi Kota MungkidPeta lokasi Kota MungkidNegara IndonesiaProvinsiJawa TengahKabupatenMagelangKecamatanMertoyudanMungkid (Sebagian)Peresmian ibu kota22 Maret 1984Dasar hukumPP No. 21 Tahun 1982Populasi • Total-Zona waktuUTC+7 (WIB) Mungkid atau Kota Mungkid (Jawa: ꦏꦸꦛ​ꦩꦸꦁꦏꦶꦢ꧀, translit. Kut...

 

Yayasan Perangkat Lunak BebasSingkatanFSFTanggal pendirian4 Oktober 1985; 38 tahun lalu (1985-10-04)[1]PendiriRichard StallmanStatusYayasanTipe501(c)(3) non-profit organizationTujuanPendidikanKantor pusatBoston, Massachusetts, ASWilayah layanan InternasionalJumlah anggota Perorangan dan patron korporatPresidenGeoffrey Knauth[2]AfiliasiSoftware Freedom Law CenterAnggaran $1.199.333 pada FY 2013[3]Jumlah Staf 14[2]Situs webwww.fsf.org Yayasan Perangkat Lunak...

2009 studio album by Shorthand PhoneticsErrors in Calculating Odds, Errors in Calculating ValueStudio album by Shorthand PhoneticsReleasedMay 16, 2009 (Tsefula/Tsefuelha Records), July 2, 2009 (Yes No Wave Music)GenreIndie rock, Lo-fi[1]Length80:00 (Tsefula/Tsefuelha Records Release), 90:12 (Yes No Wave Music 2 CD Release)LabelTsefula/Tsefuelha Records and Yes No Wave MusicProducerAbabil AshariShorthand Phonetics chronology Score No. 1 (Dream:Chase) in A major, Op. 17 for Thre...

 

Kathleen NooneKathleen Noone di All My Children (1977)LahirKathleen O'Meara8 Januari 1945 (umur 79)Hillsdale, New Jersey, A.S.PekerjaanAktrisTahun aktif1965–sekarangSuami/istriBill Noone ​ ​(m. 1967; c. 1976)​Situs webwww.kathleennoone.com Kathleen Noone (nee Kathleen O'Meara; lahir 8 Januari 1945)[1] adalah seorang aktris Amerika. Dia memulai karirnya sebagai penyanyi di klub malam dan tampil di musikal di panggung Broadway...

 

This article is about the mountain. For the Regional District, see Regional District of Mount Waddington, British Columbia. Mountain in British Columbia, Canada Mount WaddingtonHighest pointElevation4,019 m (13,186 ft)[1]Prominence3,289 m (10,791 ft)[1]Isolation562 km (349 mi) ListingWorld most prominent peaks 63rdNorth America highest peaks 115thNorth America prominent peaks 12thNorth America isolated peaks 26thCanada highest major peak...

Marchesato di Castel Goffredo Dati amministrativiLingue parlateVolgare, Latino, Italiano CapitaleCastel Goffredo Dipendente da Ducato di Mantova PoliticaForma di governoMarchesato Nascita1444 con Alessandro Gonzaga Fine1593 con Rodolfo Gonzaga CausaUccisione di Rodolfo Gonzaga (1593) Territorio e popolazioneBacino geograficoTerritorio comunale di Castel Goffredo Religione e societàReligioni preminentiCattolica Religioni minoritarieEbraismo Carta dei confini del Ducato di Mantova nel Seicento...

 

クルアーンのスーラについては「地震 (クルアーン)」をご覧ください。 ポータル 災害 地震(じしん、英: earthquake)は、以下の2つの意味で用いられる[1]。 地震学における定義: 地球表面を構成している岩盤(地殻)の内部で、固く密着している岩石同士が、断層と呼ばれる破壊面を境目にして、急激にずれ動くこと。これによって大きな地面の振動が生じ�...

 

Sports venue in Ljubljana, Slovenia Bežigrad StadiumBežigrad Stadium in 1935Full nameBežigrad Central StadiumLocationBežigrad, Ljubljana, SloveniaCoordinates46°4′8.84″N 14°30′30.60″E / 46.0691222°N 14.5085000°E / 46.0691222; 14.5085000OwnerCity Municipality of LjubljanaConstructionBuilt1935Closed2008ArchitectJože PlečnikTenantsNK Olimpija Ljubljana (1945–2005)NK Factor (2004–2005) NK Bežigrad (2005–2007) Slovenia national football team (1995–...

1974 United States Senate election in Oklahoma ← 1968 November 3, 1974 1980 →   Nominee Henry Bellmon Ed Edmondson Party Republican Democratic Popular vote 390,997 387,162 Percentage 49.38% 48.90% County results Bellmon:      40-50%      50-60%      60-70%      70-80% Edmondson:      40–50%      50–60%  ...

 

Component of the US National Guard of the state of Alabama Alabama National GuardOfficial seal of the Alabama National Guard since 2017Active1807–presentCountry United StatesAllegiance United States AlabamaBranch United States Army United States Air ForceTypeNational GuardRoleReserve component of the U.S. Armed ForcesMilitiaPart ofNational Guard BureauAlabama Military DepartmentHeadquartersJFHQ-AL, Montgomery, AlabamaMotto(s)Always Ready, Always ThereCommanders...

 

Argentine former professional footballer In this Spanish name, the first or paternal surname is Figueroa and the second or maternal family name is Herrera. Luciano FigueroaPersonal informationFull name Luciano Gabriel Figueroa HerreraDate of birth (1981-05-19) 19 May 1981 (age 42)Place of birth Santa Fe, ArgentinaHeight 1.83 m (6 ft 0 in)[1]Position(s) StrikerSenior career*Years Team Apps (Gls)2001–2003 Rosario Central 57 (35)2003 Birmingham City 1 (0)200...

Artikel ini mengenai Allah dalam istilah Kekristenan di Indonesia dan bukan mengenai Allah, Tuhan dalam Islam. Untuk pemahaman lebih lanjut, lihat artikel Penggunaan Allah bagi umat Kristen Indonesia. Bagian dari sebuah serial tentangSepuluhPerintah Allah Akulah TUHAN Allahmu Jangan ada allah lain Jangan membuat patung apa pun Jangan sembarangan menyebut nama TUHAN Kuduskanlah hari Sabat Hormatilah ayahmu dan ibumu Jangan membunuh Jangan berzinah Jangan mencuri Jangan bersaksi dusta Jangan me...

 

El orgasmo (del griego ὀργασμός, orgasmós)[1]​ o clímax sexual es la descarga repentina de la tensión sexual acumulada durante el ciclo de la respuesta sexual, resultando en contracciones musculares rítmicas en la región pélvica caracterizadas por el placer sexual.[2]​[3]​[4]​ Experimentados por hombres y mujeres, los orgasmos son controlados por el sistema nervioso involuntario o autónomo. A menudo se asocian con otras acciones involuntarias, incluyend...

 

«È volgare tradizione, presso molti, che i nostri nonni non viaggiassero e che venendo da Como a Milano, dovendo attraversare il bosco della Merlata, facessero testamento come il crociato che si recava in Terra Santa.» (A. Bertarelli, A. Monti, Tre secoli di vita milanese nei documenti iconografici 1630-1875, Milano, 1927, p.281 e p.695) MerlataStato Italia Regioni Lombardia Province Milano Lunghezza4 km Portata media0,7 m³/s Altitudine sorgente130 m s.l.m. Nascea Baranzat...

Radio station in Great Falls, MontanaKAAKGreat Falls, MontanaBroadcast areaGreat Falls areaFrequency98.9 MHzBrandingK 99ProgrammingFormatTop 40 (CHR)AffiliationsCompass Media NetworksPremiere NetworksWestwood OneOwnershipOwnerTownsquare Media(Townsquare License, LLC)Sister stationsKLFM, KMON, KMON-FM, KVVRTechnical information[1]Licensing authorityFCCFacility ID63872ClassC1ERP100,000 wattsHAAT147.0 meters (482.3 ft)Transmitter coordinates47°32′23″N 111°17′06″W /...

 

Nếu gió thổi song song với đường bờ biển ở Nam bán cầu (như dọc theo bờ biển Peru, nơi gió thổi về hướng bắc), thì vận chuyển Ekman có thể tạo ra một chuyển động ròng của nước bề mặt 90° về bên trái. Điều này có thể dẫn tới nước trồi vùng duyên hải.[1] Nước trồi là một hiện tượng hải dương nói về dòng nước lạnh, nhiều dinh dưỡng và đặc quánh di chuyển từ ph...

 

Frankfurt (Main) Ost Empfangsgebäude des OstbahnhofsEmpfangsgebäude des Ostbahnhofs Daten Bauform Durchgangsbahnhof Bahnsteiggleise 2 Abkürzung FFO IBNR 8002039 Preisklasse 4 Eröffnung 10. März 1913 bahnhof.de Frankfurt (Main)-1038926 Architektonische Daten Architekten Karl Radlbeck Lage Stadt/Gemeinde Frankfurt am Main Ort/Ortsteil Ostend Land Hessen Staat Deutschland Koordinaten 50° 6′ 46″ N, 8° 42′ 29″ O50.1127788.708056Koordinaten: 50° 6...

Cet article est une ébauche concernant un athlète marocain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Soufiyan BouqantarBiographieNaissance 30 août 1993 (31 ans)KhémissetNationalité marocaineFormation Université Mohammed V - SouissiActivité AthlèteAutres informationsTaille 1,73 m (5′ 8″)Poids 54 kg (119 lb)Sport AthlétismeDiscipline sportive 5 000 mètresmodifier - mod...

 

Ida di Waldeck e PyrmontPrincipessa consorte di Schaumburg-LippeIn carica23 giugno 1816 –21 novembre 1860 PredecessoreGiuliana d'Assia-Philippsthal come contessa di Schaumburg-Lippe SuccessoreErminia di Waldeck e Pyrmont Nome completo(DE) Ida Caroline Luise NascitaRhoden, 26 settembre 1796 MorteMentone, 12 aprile 1869 Casa realeCasato di Waldeck e PyrmontCasata di Lippe PadreGiorgio I di Waldeck e Pyrmont MadreAugusta di Schwarzburg-Sondershausen Consorte diGiorgio Guglielmo di S...