Mathematical identity found by Jacobi in 1829
"Triple product identity" redirects here. For the ternary operation on vector spaces, see
Triple product .
In mathematics , the Jacobi triple product is the identity:
∏ ∏ -->
m
=
1
∞ ∞ -->
(
1
− − -->
x
2
m
)
(
1
+
x
2
m
− − -->
1
y
2
)
(
1
+
x
2
m
− − -->
1
y
2
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
x
n
2
y
2
n
,
{\displaystyle \prod _{m=1}^{\infty }\left(1-x^{2m}\right)\left(1+x^{2m-1}y^{2}\right)\left(1+{\frac {x^{2m-1}}{y^{2}}}\right)=\sum _{n=-\infty }^{\infty }x^{n^{2}}y^{2n},}
for complex numbers x and y , with |x | < 1 and y ≠ 0. It was introduced by Jacobi (1829 ) in his work Fundamenta Nova Theoriae Functionum Ellipticarum .
The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1 , and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra .
Properties
Jacobi's proof relies on Euler's pentagonal number theorem , which is itself a specific case of the Jacobi triple product identity.
Let
x
=
q
q
{\displaystyle x=q{\sqrt {q}}}
and
y
2
=
− − -->
q
{\displaystyle y^{2}=-{\sqrt {q}}}
. Then we have
ϕ ϕ -->
(
q
)
=
∏ ∏ -->
m
=
1
∞ ∞ -->
(
1
− − -->
q
m
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
(
− − -->
1
)
n
q
3
n
2
− − -->
n
2
.
{\displaystyle \phi (q)=\prod _{m=1}^{\infty }\left(1-q^{m}\right)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{\frac {3n^{2}-n}{2}}.}
The Rogers–Ramanujan identities follow with
x
=
q
2
q
{\displaystyle x=q^{2}{\sqrt {q}}}
,
y
2
=
− − -->
q
{\displaystyle y^{2}=-{\sqrt {q}}}
and
x
=
q
2
q
{\displaystyle x=q^{2}{\sqrt {q}}}
,
y
2
=
− − -->
q
q
{\displaystyle y^{2}=-q{\sqrt {q}}}
.
The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows:
Let
x
=
e
i
π π -->
τ τ -->
{\displaystyle x=e^{i\pi \tau }}
and
y
=
e
i
π π -->
z
.
{\displaystyle y=e^{i\pi z}.}
Then the Jacobi theta function
ϑ ϑ -->
(
z
;
τ τ -->
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
e
π π -->
i
n
2
τ τ -->
+
2
π π -->
i
n
z
{\displaystyle \vartheta (z;\tau )=\sum _{n=-\infty }^{\infty }e^{\pi {\rm {i}}n^{2}\tau +2\pi {\rm {i}}nz}}
can be written in the form
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
y
2
n
x
n
2
.
{\displaystyle \sum _{n=-\infty }^{\infty }y^{2n}x^{n^{2}}.}
Using the Jacobi triple product identity, the theta function can be written as the product
ϑ ϑ -->
(
z
;
τ τ -->
)
=
∏ ∏ -->
m
=
1
∞ ∞ -->
(
1
− − -->
e
2
m
π π -->
i
τ τ -->
)
[
1
+
e
(
2
m
− − -->
1
)
π π -->
i
τ τ -->
+
2
π π -->
i
z
]
[
1
+
e
(
2
m
− − -->
1
)
π π -->
i
τ τ -->
− − -->
2
π π -->
i
z
]
.
{\displaystyle \vartheta (z;\tau )=\prod _{m=1}^{\infty }\left(1-e^{2m\pi {\rm {i}}\tau }\right)\left[1+e^{(2m-1)\pi {\rm {i}}\tau +2\pi {\rm {i}}z}\right]\left[1+e^{(2m-1)\pi {\rm {i}}\tau -2\pi {\rm {i}}z}\right].}
There are many different notations used to express the Jacobi triple product. It takes on a concise form when expressed in terms of q -Pochhammer symbols :
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
q
n
(
n
+
1
)
2
z
n
=
(
q
;
q
)
∞ ∞ -->
(
− − -->
1
z
;
q
)
∞ ∞ -->
(
− − -->
z
q
;
q
)
∞ ∞ -->
,
{\displaystyle \sum _{n=-\infty }^{\infty }q^{\frac {n(n+1)}{2}}z^{n}=(q;q)_{\infty }\;\left(-{\tfrac {1}{z}};q\right)_{\infty }\;(-zq;q)_{\infty },}
where
(
a
;
q
)
∞ ∞ -->
{\displaystyle (a;q)_{\infty }}
is the infinite q -Pochhammer symbol.
It enjoys a particularly elegant form when expressed in terms of the Ramanujan theta function . For
|
a
b
|
<
1
{\displaystyle |ab|<1}
it can be written as
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
a
n
(
n
+
1
)
2
b
n
(
n
− − -->
1
)
2
=
(
− − -->
a
;
a
b
)
∞ ∞ -->
(
− − -->
b
;
a
b
)
∞ ∞ -->
(
a
b
;
a
b
)
∞ ∞ -->
.
{\displaystyle \sum _{n=-\infty }^{\infty }a^{\frac {n(n+1)}{2}}\;b^{\frac {n(n-1)}{2}}=(-a;ab)_{\infty }\;(-b;ab)_{\infty }\;(ab;ab)_{\infty }.}
Proof
Let
f
x
(
y
)
=
∏ ∏ -->
m
=
1
∞ ∞ -->
(
1
− − -->
x
2
m
)
(
1
+
x
2
m
− − -->
1
y
2
)
(
1
+
x
2
m
− − -->
1
y
− − -->
2
)
{\displaystyle f_{x}(y)=\prod _{m=1}^{\infty }\left(1-x^{2m}\right)\left(1+x^{2m-1}y^{2}\right)\left(1+x^{2m-1}y^{-2}\right)}
Substituting xy for y and multiplying the new terms out gives
f
x
(
x
y
)
=
1
+
x
− − -->
1
y
− − -->
2
1
+
x
y
2
f
x
(
y
)
=
x
− − -->
1
y
− − -->
2
f
x
(
y
)
{\displaystyle f_{x}(xy)={\frac {1+x^{-1}y^{-2}}{1+xy^{2}}}f_{x}(y)=x^{-1}y^{-2}f_{x}(y)}
Since
f
x
{\displaystyle f_{x}}
is meromorphic for
|
y
|
>
0
{\displaystyle |y|>0}
, it has a Laurent series
f
x
(
y
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
c
n
(
x
)
y
2
n
{\displaystyle f_{x}(y)=\sum _{n=-\infty }^{\infty }c_{n}(x)y^{2n}}
which satisfies
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
c
n
(
x
)
x
2
n
+
1
y
2
n
=
x
f
x
(
x
y
)
=
y
− − -->
2
f
x
(
y
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
c
n
+
1
(
x
)
y
2
n
{\displaystyle \sum _{n=-\infty }^{\infty }c_{n}(x)x^{2n+1}y^{2n}=xf_{x}(xy)=y^{-2}f_{x}(y)=\sum _{n=-\infty }^{\infty }c_{n+1}(x)y^{2n}}
so that
c
n
+
1
(
x
)
=
c
n
(
x
)
x
2
n
+
1
=
⋯ ⋯ -->
=
c
0
(
x
)
x
(
n
+
1
)
2
{\displaystyle c_{n+1}(x)=c_{n}(x)x^{2n+1}=\dots =c_{0}(x)x^{(n+1)^{2}}}
and hence
f
x
(
y
)
=
c
0
(
x
)
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
x
n
2
y
2
n
{\displaystyle f_{x}(y)=c_{0}(x)\sum _{n=-\infty }^{\infty }x^{n^{2}}y^{2n}}
Evaluating c 0 (x )
Showing that
c
0
(
x
)
=
1
{\displaystyle c_{0}(x)=1}
(the polynomial of x of
y
0
{\displaystyle y^{0}}
is 1 ) is technical. One way is to set
y
=
1
{\displaystyle y=1}
and show both the numerator and the denominator of
1
c
0
(
e
2
i
π π -->
z
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
e
2
i
π π -->
n
2
z
∏ ∏ -->
m
=
1
∞ ∞ -->
(
1
− − -->
e
2
i
π π -->
m
z
)
(
1
+
e
2
i
π π -->
(
2
m
− − -->
1
)
z
)
2
{\displaystyle {\frac {1}{c_{0}(e^{2i\pi z})}}={\frac {\sum \limits _{n=-\infty }^{\infty }e^{2i\pi n^{2}z}}{\prod \limits _{m=1}^{\infty }(1-e^{2i\pi mz})(1+e^{2i\pi (2m-1)z})^{2}}}}
are weight 1/2 modular under
z
↦ ↦ -->
− − -->
1
4
z
{\displaystyle z\mapsto -{\frac {1}{4z}}}
, since they are also 1-periodic and bounded on the upper half plane the quotient has to be constant so that
c
0
(
x
)
=
c
0
(
0
)
=
1
{\displaystyle c_{0}(x)=c_{0}(0)=1}
.
Other proofs
A different proof is given by G. E. Andrews based on two identities of Euler.[ 1]
For the analytic case, see Apostol.[ 2]
References
Peter J. Cameron, Combinatorics: Topics, Techniques, Algorithms , (1994) Cambridge University Press , ISBN 0-521-45761-0
Jacobi, C. G. J. (1829), Fundamenta nova theoriae functionum ellipticarum (in Latin), Königsberg: Borntraeger, ISBN 978-1-108-05200-9 , Reprinted by Cambridge University Press 2012
Carlitz , L (1962), "A note on the Jacobi theta formula" , Bulletin of the American Mathematical Society , vol. 68, no. 6, American Mathematical Society , pp. 591– 592
Wright, E. M. (1965), "An Enumerative Proof of An Identity of Jacobi", Journal of the London Mathematical Society , London Mathematical Society : 55– 57, doi :10.1112/jlms/s1-40.1.55