Pentagonal number theorem

In mathematics, Euler's pentagonal number theorem relates the product and series representations of the Euler function. It states that

In other words,

The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula gk = k(3k − 1)/2 for k = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers (sequence A001318 in the OEIS). (The constant term 1 corresponds to .) This holds as an identity of convergent power series for , and also as an identity of formal power series.

A striking feature of this formula is the amount of cancellation in the expansion of the product.

Relation with partitions

The identity implies a recurrence for calculating , the number of partitions of n:

or more formally,

where the summation is over all nonzero integers k (positive and negative) and is the kth generalized pentagonal number. Since for all , the apparently infinite series on the right has only finitely many non-zero terms, enabling an efficient calculation of p(n).

Franklin's bijective proof

The theorem can be interpreted combinatorially in terms of partitions. In particular, the left hand side is a generating function for the number of partitions of n into an even number of distinct parts minus the number of partitions of n into an odd number of distinct parts. Each partition of n into an even number of distinct parts contributes +1 to the coefficient of xn; each partition into an odd number of distinct parts contributes −1. (The article on unrestricted partition functions discusses this type of generating function.)

For example, the coefficient of x5 is +1 because there are two ways to split 5 into an even number of distinct parts (4 + 1 and 3 + 2), but only one way to do so for an odd number of distinct parts (the one-part partition 5). However, the coefficient of x12 is −1 because there are seven ways to partition 12 into an even number of distinct parts, but there are eight ways to partition 12 into an odd number of distinct parts, and 7 − 8 = −1.

This interpretation leads to a proof of the identity by canceling pairs of matched terms (involution method).[1] Consider the Ferrers diagram of any partition of n into distinct parts. For example, the diagram below shows n = 20 and the partition 20 = 7 + 6 + 4 + 3.

******o
*****o
****
***

Let m be the number of elements in the smallest row of the diagram (m = 3 in the above example). Let s be the number of elements in the rightmost 45 degree line of the diagram (s = 2 dots in red above, since 7 − 1 = 6, but 6 − 1 > 4). If m > s, take the rightmost 45-degree line and move it to form a new row, as in the matching diagram below.

******
*****
****
***
oo

If m ≤ s (as in our newly formed diagram where m = 2, s = 5) we may reverse the process by moving the bottom row to form a new 45 degree line (adding 1 element to each of the first m rows), taking us back to the first diagram.

A bit of thought shows that this process always changes the parity of the number of rows, and applying the process twice brings us back to the original diagram. This enables us to pair off Ferrers diagrams contributing 1 and −1 to the xn term of the series, resulting in a net coefficient of 0 for xn. This holds for every term except when the process cannot be performed on every Ferrers diagram with n dots. There are two such cases:

1) m = s and the rightmost diagonal and bottom row meet. For example,

*****
****
***

Attempting to perform the operation would lead us to:

******
*****
*

which fails to change the parity of the number of rows, and is not reversible in the sense that performing the operation again does not take us back to the original diagram. If there are m elements in the last row of the original diagram, then

where the new index k is taken to equal m. Note that the sign associated with this partition is (−1)s, which by construction equals (−1)m and (−1)k.

2) m = s + 1 and the rightmost diagonal and bottom row meet. For example,

******
*****
****

Our operation requires us to move the right diagonal to the bottom row, but that would lead to two rows of three elements, forbidden since we're counting partitions into distinct parts. This is the previous case but with one fewer row, so

where we take k = 1−m (a negative integer). Here the associated sign is (−1)s with sm − 1 = −k, therefore the sign is again (−1)k.

In summary, it has been shown that partitions into an even number of distinct parts and an odd number of distinct parts exactly cancel each other, producing null terms 0xn, except if n is a generalized pentagonal number , in which case there is exactly one Ferrers diagram left over, producing a term (−1)kxn. But this is precisely what the right side of the identity says should happen, so we are finished.

Partition recurrence

We can rephrase the above proof, using integer partitions, which we denote as: , where . The number of partitions of n is the partition function p(n) having generating function:

Note that is the reciprocal of the product on the left hand side of our identity:

Let us denote the expansion of our product by so that

Multiplying out the left hand side and equating coefficients on the two sides, we obtain a0 p(0) = 1 and for all . This gives a recurrence relation defining p(n) in terms of an, and vice versa a recurrence for an in terms of p(n). Thus, our desired result:

for is equivalent to the identity where and i ranges over all integers such that (this range includes both positive and negative i, so as to use both kinds of generalized pentagonal numbers). This in turn means:

In terms of sets of partitions, this is equivalent to saying that the following sets are of equal cardinality:

        and        

where denotes the set of all partitions of . All that remains is to give a bijection from one set to the other, which is accomplished by the function φ from X to Y which maps the partition to the partition defined by:

This is an involution (a self-inverse mapping), and thus in particular a bijection, which proves our claim and the identity.

See also

The pentagonal number theorem occurs as a special case of the Jacobi triple product.

Q-series generalize Euler's function, which is closely related to the Dedekind eta function, and occurs in the study of modular forms. The modulus of the Euler function (see there for picture) shows the fractal modular group symmetry and occurs in the study of the interior of the Mandelbrot set.

References

  1. ^ Franklin, F. (1881). "Sur le developpement du produit (1 – x)(1 – x2)(1 − x3) ...". Comtes Rendues Acad. Paris Ser A. 92: 448–450.

Read other articles:

Situs Makam Syekh Burhanuddin di Padang Pariaman Basapa adalah suatu upacara yang dilakukan oleh masyarakat Muslim di sekitar Kabupaten Padang Pariaman, Sumatera Barat khususnya di kecamatan Ulakan. Kegiatan utama yang dilakukan dalam tradisi ini adalah berziarah ke makam Syekh Burhanuddin, salah satu tokoh yang berperan penting dalam penyebaran agama Islam di Sumatera Barat pada masa pemerintahan Kerajaan Pagaruyung. Kegiatan ini bertujuan untuk mengenang jasa sang ulama dalam upayanya menye...

 

Disambiguazione – Se stai cercando altri significati, vedi Ancona (disambigua). Anconacomune Ancona – Veduta LocalizzazioneStato Italia Regione Marche Provincia Ancona AmministrazioneSindacoDaniele Silvetti (FI) dal 29-5-2023 TerritorioCoordinate43°37′N 13°31′E / 43.616667°N 13.516667°E43.616667; 13.516667 (Ancona)Coordinate: 43°37′N 13°31′E / 43.616667°N 13.516667°E43.616667; 13.516667 (Ancona) Altitudine16&#...

 

Strada statale 131 Carlo FeliceDenominazioni precedentistrada statale 131 Arborense (1928–1935) LocalizzazioneStato Italia Regioni Sardegna Province CagliariSud Sardegna Oristano Nuoro Sassari DatiClassificazioneStrada statale InizioCagliari FinePorto Torres Lunghezza231,559 km Direzionesud-nord Data apertura18 aprile 1935 Provvedimento di istituzioneLegge 17 maggio 1928, n. 1094 in materia di Istituzione dell'Azienda autonoma statale della stra...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) SMAN 1 Kota SukabumiInformasiDidirikan8 Agustus 1961Kepala SekolahCeng Mamad, S.Pd, M.Pd (2023-sekarang)AlamatLokasiJl. RH Didi Sukardi No. 1...

 

Charlie HebdoTipeSatir mingguan majalah beritaFormatMajalahRedaksiCharbDidirikan1969, 1992Pandangan politikantireligius, Sayap kiri, anarkisPusatParis, PrancisSirkulasi surat kabar150,000ISSN1240-0068Situs webcharliehebdo.fr Charlie Hebdo (pengucapan bahasa Prancis: [ʃaʁli ɛbdo]; Bahasa Prancis untuk Charlie Weekly) adalah surat kabar mingguan satir Prancis, yang menampilkan kartun, laporan, polemik dan lelucon. Secara nyaring non-konformis dalam penyuaraan, publikasi memiliki kecondo...

 

جائزة نوبلمعلومات عامةنوع الجائزة جائزة منحت لـ المساهمات البارزة في الفيزياء، الكيمياء، الأدب، السلام، الطب أو علم وظائف الأعضاء بالإضافة للجائزة التذكارية في العلوم الاقتصادية حيث استحدثت ووضعت مع جوائز نوبل، من أجل المساهمات البارزة في العلوم الاقتصاديةالبلد  ال�...

American politician (born 1949) Dan WebsterMember of theU.S. House of Representativesfrom FloridaIncumbentAssumed office January 3, 2011Preceded byAlan GraysonConstituency8th district (2011–2013)10th district (2013–2017)11th district (2017–present)Majority Leader of the Florida SenateIn officeNovember 2006 – November 4, 2008Preceded byJ. Alex VillalobosSucceeded byAlex Díaz de la PortillaMember of the Florida SenateIn officeNovember 3, 1998 – November 4, 2008P...

 

Río Bravo beralih ke halaman ini. Untuk kegunaan lain, lihat Río Bravo (disambiguasi) dan Rio Grande (disambiguasi). Rio Grande del Norte beralih ke halaman ini. Untuk negara bagian Brasil, lihat Rio Grande do Norte dan Rio Grande do Sul. Rio Grande Río Bravo del Norte, Tooh Baʼáadii Templat:Nv icon, Kótsoi (apj) Rio Grande di Taman Nasional Big Bend, di perbatasan AS–Meksiko Countries Amerika Serikat, Meksiko Provinsi Colorado, New Mexico, Texas, Chihuahua, Coahuila, Nuevo León, Tam...

 

American actor Charles Michael DavisDavis at PaleyFest 2014 for The Originals.Born (1981-12-01) December 1, 1981 (age 42)Dayton, Ohio, U.S.OccupationActorYears active2005–present Charles Michael Davis (born December 1, 1981) is an American actor. He is best known for his roles as Marcel Gerard on The CW television drama The Originals (2013–2018) and Zane Anders on the TV Land original series Younger (2017–2021). He also starred as Special Agent Quentin Carter on NCIS: New Orle...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

此條目没有列出任何参考或来源。 (2014年12月6日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 伊斯蘭教系列伊斯蘭法學原理 法學 教統 伊制瑪爾 伊智提哈德 伊赫提拉弗 伊斯提赫拉勒(阿拉伯语:استحلال) 伊斯提哈桑 伊斯提斯哈布(阿拉伯语:استصحاب) 麥茲海布 伊斯蘭學校 麥詩賴海 �...

Questa voce o sezione sull'argomento filosofi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Anders Chydenius Anders Chydenius (Sotkamo, 26 febbraio 1729 – Kokkola, 1º febbraio 1803) è stato un filosofo finlandese. Anders Chydenius è stato il leader del liberalismo classico nei paesi nordici. Nacque...

 

كارباثوس   معلومات جغرافية المنطقة دوديكانيسيا  الموقع بحر إيجة  الإحداثيات 35°35′00″N 27°08′00″E / 35.583333333333°N 27.133333333333°E / 35.583333333333; 27.133333333333   [1] [2] المسطح المائي بحر إيجة  المساحة 324.7 كيلومتر مربع  أعلى ارتفاع (م) 1215 متر  الحكومة البلد اليون...

 

Bola basket pada Olimpiade Musim Panas 2004LokasiArena Olimpiade HellinikonO.A.C.A. Olympic Indoor HallAthenaTanggal15–28 Agustus 2004Jumlah disiplin2Peserta287 dari 18 negara← 20002008 → Italia dan Argentina melakukan pemanasan sebelum pertandingan. Bola basket pada Olimpiade Musim Panas 2004 adalah pelaksanaan cabang olahraga bola basket pada penyelenggaraan Olimpiade Musim Panas 2004. Kompetisi pada cabang olahraga ini berlangsung di Arena Olimpiade H...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bani Abdu Syams – berita · surat kabar · buku · cendekiawan · JSTOR Bani Abdu Syams (bahasa Arab: بنو عبد شمس, Banu 'Abd Syams) adalah salah satu klan dari suku Quraisy Mekkah, yang merujuk ...

 

TyddewiSaint David’s Ciudad Bandera TyddewiLocalización de Tyddewi en PembrokeshireCoordenadas 51°52′56″N 5°16′07″O / 51.882222222222, -5.2686111111111Entidad Ciudad • País  Reino Unido • Nación Gales Gales • Condado preservado Dyfed • Condado PembrokeshireEventos históricos   • Fundación siglo VI (antes 589)Superficie   • Total 17,93 mi² (46,44 km²) Población (2011)  ...

 

Australian rock singer-songwriter and musician (born 1976) Kasey ChambersChambers in 2012Background informationBorn (1976-06-04) 4 June 1976 (age 48)Mount Gambier, South Australia, AustraliaOriginAdelaide, South Australia, AustraliaGenresCountryOccupation(s)MusicianInstrument(s) Vocals guitars Years active1987–presentLabels EMI Asylum Essence Warner Bros. Liberation/Sugar Hill Websitekaseychambers.comMusical artist Kasey Chambers (born 4 June 1976) is an Australian country singer-songw...

Naval watercraft designed with the sole purpose of carrying and utilizing firepower For the boxer, see Gunboat Smith. For the video game, see Gunboat (video game). Not to be confused with Gunship. Canonnière redirects here. For the French frigate, see French frigate Minerve (1794). A Bramble-class gunboat, built for the Royal Navy in 1886 A gunboat is a naval watercraft designed for the express purpose of carrying one or more guns to bombard coastal targets, as opposed to those military craf...

 

Private education institute in Toronto, Canada For other uses, see RCC (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (January 2014) (Lear...