Numerical integration

Numerical integration is used to calculate a numerical approximation for the value , the area under the curve defined by .

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature;[1] others take "quadrature" to include higher-dimensional integration.

The basic problem in numerical integration is to compute an approximate solution to a definite integral

to a given degree of accuracy. If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision.

Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations.

Motivation and need

There are several reasons for carrying out numerical integration, as opposed to analytical integration by finding the antiderivative:

  1. The integrand f (x) may be known only at certain points, such as obtained by sampling. Some embedded systems and other computer applications may need numerical integration for this reason.
  2. A formula for the integrand may be known, but it may be difficult or impossible to find an antiderivative that is an elementary function. An example of such an integrand is f (x) = exp(−x2), the antiderivative of which (the error function, times a constant) cannot be written in elementary form.
  3. It may be possible to find an antiderivative symbolically, but it may be easier to compute a numerical approximation than to compute the antiderivative. That may be the case if the antiderivative is given as an infinite series or product, or if its evaluation requires a special function that is not available.

History

The term "numerical integration" first appears in 1915 in the publication A Course in Interpolation and Numeric Integration for the Mathematical Laboratory by David Gibb.[2]

"Quadrature" is a historical mathematical term that means calculating area. Quadrature problems have served as one of the main sources of mathematical analysis. Mathematicians of Ancient Greece, according to the Pythagorean doctrine, understood calculation of area as the process of constructing geometrically a square having the same area (squaring). That is why the process was named "quadrature". For example, a quadrature of the circle, Lune of Hippocrates, The Quadrature of the Parabola. This construction must be performed only by means of compass and straightedge.

The ancient Babylonians used the trapezoidal rule to integrate the motion of Jupiter along the ecliptic.[3]

Antique method to find the Geometric mean

For a quadrature of a rectangle with the sides a and b it is necessary to construct a square with the side (the Geometric mean of a and b). For this purpose it is possible to use the following fact: if we draw the circle with the sum of a and b as the diameter, then the height BH (from a point of their connection to crossing with a circle) equals their geometric mean. The similar geometrical construction solves a problem of a quadrature for a parallelogram and a triangle.

The area of a segment of a parabola

Problems of quadrature for curvilinear figures are much more difficult. The quadrature of the circle with compass and straightedge had been proved in the 19th century to be impossible. Nevertheless, for some figures (for example the Lune of Hippocrates) a quadrature can be performed. The quadratures of a sphere surface and a parabola segment done by Archimedes became the highest achievement of the antique analysis.

  • The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere.
  • The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment.

For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.

In medieval Europe the quadrature meant calculation of area by any method. More often the Method of indivisibles was used; it was less rigorous, but more simple and powerful. With its help Galileo Galilei and Gilles de Roberval found the area of a cycloid arch, Grégoire de Saint-Vincent investigated the area under a hyperbola (Opus Geometricum, 1647), and Alphonse Antonio de Sarasa, de Saint-Vincent's pupil and commentator, noted the relation of this area to logarithms.

John Wallis algebrised this method: he wrote in his Arithmetica Infinitorum (1656) series that we now call the definite integral, and he calculated their values. Isaac Barrow and James Gregory made further progress: quadratures for some algebraic curves and spirals. Christiaan Huygens successfully performed a quadrature of some Solids of revolution.

The quadrature of the hyperbola by Saint-Vincent and de Sarasa provided a new function, the natural logarithm, of critical importance.

With the invention of integral calculus came a universal method for area calculation. In response, the term "quadrature" has become traditional, and instead the modern phrase "computation of a univariate definite integral" is more common.

Methods for one-dimensional integrals

A quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration.

Numerical integration methods can generally be described as combining evaluations of the integrand to get an approximation to the integral. The integrand is evaluated at a finite set of points called integration points and a weighted sum of these values is used to approximate the integral. The integration points and weights depend on the specific method used and the accuracy required from the approximation.

An important part of the analysis of any numerical integration method is to study the behavior of the approximation error as a function of the number of integrand evaluations. A method that yields a small error for a small number of evaluations is usually considered superior. Reducing the number of evaluations of the integrand reduces the number of arithmetic operations involved, and therefore reduces the total error. Also, each evaluation takes time, and the integrand may be arbitrarily complicated.

Quadrature rules based on step functions

A "brute force" kind of numerical integration can be done, if the integrand is reasonably well-behaved (i.e. piecewise continuous and of bounded variation), by evaluating the integrand with very small increments.

Illustration of the rectangle rule.

This simplest method approximates the function by a step function (a piecewise constant function, or a segmented polynomial of degree zero) that passes through the point . This is called the midpoint rule or rectangle rule

Quadrature rules based on interpolating functions

A large class of quadrature rules can be derived by constructing interpolating functions that are easy to integrate. Typically these interpolating functions are polynomials. In practice, since polynomials of very high degree tend to oscillate wildly, only polynomials of low degree are used, typically linear and quadratic.

Illustration of the trapezoidal rule.

The interpolating function may be a straight line (an affine function, i.e. a polynomial of degree 1) passing through the points and . This is called the trapezoidal rule

Illustration of Simpson's rule.

For either one of these rules, we can make a more accurate approximation by breaking up the interval into some number of subintervals, computing an approximation for each subinterval, then adding up all the results. This is called a composite rule, extended rule, or iterated rule. For example, the composite trapezoidal rule can be stated as

where the subintervals have the form with and Here we used subintervals of the same length but one could also use intervals of varying length .

Interpolation with polynomials evaluated at equally spaced points in yields the Newton–Cotes formulas, of which the rectangle rule and the trapezoidal rule are examples. Simpson's rule, which is based on a polynomial of order 2, is also a Newton–Cotes formula.

Quadrature rules with equally spaced points have the very convenient property of nesting. The corresponding rule with each interval subdivided includes all the current points, so those integrand values can be re-used.

If we allow the intervals between interpolation points to vary, we find another group of quadrature formulas, such as the Gaussian quadrature formulas. A Gaussian quadrature rule is typically more accurate than a Newton–Cotes rule that uses the same number of function evaluations, if the integrand is smooth (i.e., if it is sufficiently differentiable). Other quadrature methods with varying intervals include Clenshaw–Curtis quadrature (also called Fejér quadrature) methods, which do nest.

Gaussian quadrature rules do not nest, but the related Gauss–Kronrod quadrature formulas do.

Adaptive algorithms

Adaptive quadrature is a numerical integration method in which the integral of a function is approximated using static quadrature rules on adaptively refined subintervals of the region of integration. Generally, adaptive algorithms are just as efficient and effective as traditional algorithms for "well behaved" integrands, but are also effective for "badly behaved" integrands for which traditional algorithms may fail.

Extrapolation methods

The accuracy of a quadrature rule of the Newton–Cotes type is generally a function of the number of evaluation points. The result is usually more accurate as the number of evaluation points increases, or, equivalently, as the width of the step size between the points decreases. It is natural to ask what the result would be if the step size were allowed to approach zero. This can be answered by extrapolating the result from two or more nonzero step sizes, using series acceleration methods such as Richardson extrapolation. The extrapolation function may be a polynomial or rational function. Extrapolation methods are described in more detail by Stoer and Bulirsch (Section 3.4) and are implemented in many of the routines in the QUADPACK library.

Conservative (a priori) error estimation

Let have a bounded first derivative over i.e. The mean value theorem for where gives for some depending on .

If we integrate in from to on both sides and take the absolute values, we obtain

We can further approximate the integral on the right-hand side by bringing the absolute value into the integrand, and replacing the term in by an upper bound

where the supremum was used to approximate.

Hence, if we approximate the integral by the quadrature rule our error is no greater than the right hand side of 1. We can convert this into an error analysis for the Riemann sum, giving an upper bound of for the error term of that particular approximation. (Note that this is precisely the error we calculated for the example .) Using more derivatives, and by tweaking the quadrature, we can do a similar error analysis using a Taylor series (using a partial sum with remainder term) for f. This error analysis gives a strict upper bound on the error, if the derivatives of f are available.

This integration method can be combined with interval arithmetic to produce computer proofs and verified calculations.

Integrals over infinite intervals

Several methods exist for approximate integration over unbounded intervals. The standard technique involves specially derived quadrature rules, such as Gauss-Hermite quadrature for integrals on the whole real line and Gauss-Laguerre quadrature for integrals on the positive reals.[4] Monte Carlo methods can also be used, or a change of variables to a finite interval; e.g., for the whole line one could use and for semi-infinite intervals one could use as possible transformations.

Multidimensional integrals

The quadrature rules discussed so far are all designed to compute one-dimensional integrals. To compute integrals in multiple dimensions, one approach is to phrase the multiple integral as repeated one-dimensional integrals by applying Fubini's theorem (the tensor product rule). This approach requires the function evaluations to grow exponentially as the number of dimensions increases. Three methods are known to overcome this so-called curse of dimensionality.

A great many additional techniques for forming multidimensional cubature integration rules for a variety of weighting functions are given in the monograph by Stroud.[5] Integration on the sphere has been reviewed by Hesse et al. (2015).[6]

Monte Carlo

Monte Carlo methods and quasi-Monte Carlo methods are easy to apply to multi-dimensional integrals. They may yield greater accuracy for the same number of function evaluations than repeated integrations using one-dimensional methods.[citation needed]

A large class of useful Monte Carlo methods are the so-called Markov chain Monte Carlo algorithms, which include the Metropolis–Hastings algorithm and Gibbs sampling.

Sparse grids

Sparse grids were originally developed by Smolyak for the quadrature of high-dimensional functions. The method is always based on a one-dimensional quadrature rule, but performs a more sophisticated combination of univariate results. However, whereas the tensor product rule guarantees that the weights of all of the cubature points will be positive if the weights of the quadrature points were positive, Smolyak's rule does not guarantee that the weights will all be positive.

Bayesian quadrature

Bayesian quadrature is a statistical approach to the numerical problem of computing integrals and falls under the field of probabilistic numerics. It can provide a full handling of the uncertainty over the solution of the integral expressed as a Gaussian process posterior variance.

Connection with differential equations

The problem of evaluating the definite integral

can be reduced to an initial value problem for an ordinary differential equation by applying the first part of the fundamental theorem of calculus. By differentiating both sides of the above with respect to the argument x, it is seen that the function F satisfies

Numerical methods for ordinary differential equations, such as Runge–Kutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order Runge–Kutta method applied to the differential equation yields Simpson's rule from above.

The differential equation has a special form: the right-hand side contains only the independent variable (here ) and not the dependent variable (here ). This simplifies the theory and algorithms considerably. The problem of evaluating integrals is thus best studied in its own right.

Conversely, the term "quadrature" may also be used for the solution of differential equations: "solving by quadrature" or "reduction to quadrature" means expressing its solution in terms of integrals.

See also

References

  1. ^ Weisstein, Eric W. "Cubature". MathWorld.
  2. ^ "Earliest Known Uses of Some of the Words of Mathematics (Q)". jeff560.tripod.com. Retrieved 31 March 2018.
  3. ^ Mathieu Ossendrijver (Jan 29, 2016). "Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph". Science. 351 (6272): 482–484. Bibcode:2016Sci...351..482O. doi:10.1126/science.aad8085. PMID 26823423. S2CID 206644971.
  4. ^ Leader, Jeffery J. (2004). Numerical Analysis and Scientific Computation. Addison Wesley. ISBN 978-0-201-73499-7.
  5. ^ Stroud, A. H. (1971). Approximate Calculation of Multiple Integrals. Cliffs, NJ: Prentice-Hall Inc. ISBN 9780130438935.
  6. ^ Kerstin Hesse, Ian H. Sloan, and Robert S. Womersley: Numerical Integration on the Sphere. In W. Freeden et al. (eds.), Handbook of Geomathematics, Springer: Berlin 2015, doi:10.1007/978-3-642-54551-1_40

Read other articles:

Friedrichshafencittà Friedrichshafen – Veduta LocalizzazioneStato Germania Land Baden-Württemberg DistrettoTubinga Circondario Lago di Costanza AmministrazioneSindacoAndreas Brand (FW) dal 2009 Data di istituzione1811 TerritorioCoordinate47°39′15″N 9°28′45″E / 47.654167°N 9.479167°E47.654167; 9.479167 (Friedrichshafen)Coordinate: 47°39′15″N 9°28′45″E / 47.654167°N 9.479167°E47.654167; 9.479167 (Friedric...

 

Map of the 87 current provincial electoral districts used in the 2020 British Columbia general election This is a list of the 87 provincial electoral districts (also informally known as ridings in Canadian English) of British Columbia, Canada, as defined by the 2015 electoral redistribution, which first came into effect for the 2017 British Columbia general election. Electoral districts are constituencies that elect members of the Legislative Assembly (MLAs) to the Legislative Assembly of Br...

 

الانتخابات الرئاسية التونسية 2009  →2004 25 أكتوبر 2009 (2009-10-25) 2011←  نسبة المشاركة 89.45%   PUP المرشح زين العابدين بن علي محمد بوشيحة الحزب التجمع الدستوري الديمقراطي حزب الوحدة الشعبية تصويت شعبي 4,238,711 236,955 النسبة المئويّة 89.62% 5.01%   UDU المرشح أحمد الإينوبلي أحمد ...

« Poutou » redirige ici. Pour les autres significations, voir Poutou (homonymie). Philippe Poutou Philippe Poutou en 2020. Fonctions Conseiller municipal de Bordeaux En fonction depuis le 28 juin 2020(3 ans, 9 mois et 5 jours) Élection 28 juin 2020 Maire Pierre Hurmic Conseiller métropolitain de Bordeaux Métropole En fonction depuis le 28 juin 2020(3 ans, 9 mois et 5 jours) Élection 28 juin 2020 Président Alain Anziani Biographie Date de naissan...

 

The Right HonourableRamsay MacDonaldFRS Perdana Menteri Britania RayaMasa jabatan5 Juni 1929 – 7 Juni 1935Penguasa monarkiGeorge V PendahuluStanley BaldwinPenggantiStanley BaldwinMasa jabatan22 Januari 1924 – 4 November 1924Penguasa monarkiGeorge V PendahuluStanley BaldwinPenggantiStanley BaldwinPemimpin Oposisi Britania RayaMasa jabatan4 November 1924 – 5 Juni 1929Penguasa monarkiGeorge V PendahuluStanley BaldwinPenggantiStanley BaldwinMasa jabatan21 November...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Nikolay Ivanovich Kostomarov Nikolay Ivanovich Kostomarov (bahasa Rusia: Никола́й Ива́нович Костома́ров, Nikolai Ivanovich Kostomarov; Ukraina: Микола Іванович Костомаров, Mykola Ivanovych Ko...

Period of the history of Lithuania The Lithuanian National Revival, alternatively the Lithuanian National Awakening or Lithuanian nationalism (Lithuanian: Lietuvių tautinis atgimimas), was a period of the history of Lithuania in the 19th century at the time when a major part of Lithuanian-inhabited areas belonged to the Russian Empire (the Russian partition of the Polish–Lithuanian Commonwealth). It was expressed by the rise of self-determination of the Lithuanians that led to the formatio...

 

Location of Camden County in New Jersey List of the National Register of Historic Places listings in Camden County, New Jersey Contents: Counties and communities in New Jersey Atlantic – Bergen (Closter, Franklin Lakes, Ridgewood, Saddle River, Wyckoff) – Burlington – Camden – Cape May – Cumberland – Essex – Gloucester – Hudson – Hunterdon – Mercer – Middlesex – Monmouth – Morris – Ocean – Passaic – Salem – Somerset – Sussex – Union – Warren Map all co...

 

2016 World Figure Skating ChampionshipsOfficial logoType:ISU ChampionshipDate:28 March – 3 AprilSeason:2015–16Location:Boston, USAHost:U.S. Figure SkatingVenue:TD GardenChampionsMen's singles: Javier FernándezLadies' singles: Evgenia MedvedevaPairs: Meagan Duhamel / Eric RadfordIce dance: Gabriella Papadakis / Guillaume CizeronNavigationPrevious: 2015 World ChampionshipsNext: 2017 World Championships The 2016 ISU World Figure Skating Championships took place March 28 – April 3, 2016 i...

此條目可参照英語維基百科相應條目来扩充。 (2022年1月31日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 艾哈迈德·哈桑·贝克尔أحمد حسن البكر第4任伊拉克总统任期1968年7月17日—1979年7月16日副总统萨达姆·侯...

 

温贝托·德·阿连卡尔·卡斯特洛·布兰科Humberto de Alencar Castelo Branco第26任巴西總統任期1964年4月15日—1967年3月15日副总统若澤·馬利亞·奥克明前任拉涅里·馬齐利继任阿图尔·达科斯塔·伊·席尔瓦 个人资料出生(1897-09-20)1897年9月20日 巴西塞阿腊州福塔雷萨逝世1967年7月18日(1967歲—07—18)(69歲) 巴西塞阿腊州梅塞雅納墓地 巴西福塔雷薩卡斯特洛·布兰科陵寢[1]...

 

A variation of the flag of Quebec, with the cannabis leaf replacing the fleur-de-lys. Cannabis in Quebec became legal when the national Cannabis Act went into force on 17 October 2018. Cannabis in Canada has been legal for medicinal purposes since 2001 under conditions outlined in the Marihuana for Medical Purposes Regulations, later superseded by the Access to Cannabis for Medical Purposes Regulations,[1] issued by Health Canada and seed, grain, and fibre production was permitted un...

Single-volume dictionary of American English Oxford American Dictionary AuthorEugene Ehrlich (editor)Stuart Berg Flexner (editor)Gorton Carruth (editor)Joyce M. Hawkins (editor)SubjectDictionary of American EnglishPublisherOxford University PressPublication datefirst edition, 1980Media typePrint (Hardcover)Pages816ISBN0-19-502795-7 The Oxford American Dictionary (OAD) is a single-volume dictionary of American English. It was the first dictionary published by the Oxford University Press t...

 

Canal 13JenisJaringan televisiSloganPor el 13 (Pada 13)Negara ChiliTanggal peluncuran21 Agustus 1959 (1959-08-21)Kantor pusatSantiago, ChiliWilayahChiliFormat gambar480i (SD)Situs webhttp://www.13.cl Canal 13 adalah saluran televisi Chili. Hal ini dimiliki oleh Grupo Luksic terkait dengan Pontificia Universidad Católica de Chile.[1] Stasiun televisi 13C 13HD 13 Valparaíso 13 Concepción 13i Rec TV Stasiun radio Horizonte.cl Play FM Sonar FM Top FM Referensi ^ Canal 13 Corp...

 

Opinion polls for the 2024 Indonesian presidential election This page lists public opinion polls conducted for the 2024 Indonesian presidential election. Incumbent president Joko Widodo is ineligible to run for a third term. First round After candidate nominations National   Quick count   Real count Pollster Fieldwork date Sample size Margin of error Prabowo Gerindra Anies Independent Ganjar PDI-P 14 February 2024 Election results 58.59% 24.95% 16.47% Litbang Kompas[1&...

Historic church in Virginia, United States Church in Virginia, USAFirst African Baptist ChurchThe old church building, now a property of Medical College of VirginiaLocationRichmond, VirginiaCountryUSADenominationBaptistWebsitefirstafricanbaptist.orgHistoryFounded1841ClergySenior pastor(s)Dr. Rodney D. Waller The First African Baptist Church of Richmond, Virginia is a Baptist Church. Founded in 1841, its members included both slaves and freedmen. It has since had a major influence on the local...

 

Hydrophobic liquid containing volatile aroma compounds from plants For the Midnight Oil album, see Essential Oils (album). Not to be confused with essential fatty acid or fragrance oils. Plant oilsSandalwood oil Types Vegetable oil (list) Macerated oil (list) Essential oil (list) Uses Drying oil Oil paint Cooking oil Fuel Biodiesel Components Saturated fat Monounsaturated fat Polyunsaturated fat Trans fat vte An essential oil is a concentrated hydrophobic liquid containing volatile (easily ev...

 

Pour les articles homonymes, voir Apel. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (mai 2017). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Qu...

UFC 86: Jackson vs. GriffinProdotto daUltimate Fighting Championship Data5 luglio 2008 Città Las Vegas, Stati Uniti SedeMandalay Bay Events Center Spettatori10.990 Cronologia pay-per-viewThe Ultimate Fighter 7 FinaleUFC 86: Jackson vs. GriffinUFC: Silva vs Irvin Progetto Wrestling Manuale UFC 86: Jackson vs. Griffin è stato un evento di arti marziali miste tenuto dalla Ultimate Fighting Championship il 5 luglio 2008 al Mandalay Bay Events Center di Las Vegas, Stati Uniti d'America. Indice 1...

 

「次亜塩素酸」あるいは「次亜塩素酸水」とは異なります。 次亜塩素酸ナトリウム 別称Sodium chlorate(I) 識別情報 CAS登録番号 7681-52-9 KEGG D01711 RTECS番号 NH3486300 特性 化学式 NaClO モル質量 74.44 g/mol 外観 白色の固体 密度 1.07-1.14 g/cm3 液体 融点 18℃ (五水和物) 沸点 101℃ (分解) 水への溶解度 29.3 g/100ml, 0℃ 危険性 EU分類 腐食性(C)環境への危険性 (N) 主な危険性 刺激性(-5%)...