A series acceleration method is a sequence transformation that transforms the convergent sequences of partial sums of a series into more quickly convergent sequences of partial sums of an accelerated series with the same limit. If a series acceleration method is applied to a divergent series then the proper limit of the series is undefined, but the sequence transformation can still act usefully as an extrapolation method to an antilimit of the series.
The mappings from the original to the transformed series may be linear sequence transformations or non-linear sequence transformations. In general, the non-linear sequence transformations tend to be more powerful.
For alternating series, several powerful techniques, offering convergence rates from all the way to for a summation of terms, are described by Cohen et al.[3]
Euler's transform
A basic example of a linear sequence transformation, offering improved convergence, is Euler's transform. It is intended to be applied to an alternating series; it is given by
If the original series, on the left hand side, is only slowly converging, the forward differences will tend to become small quite rapidly; the additional power of two further improves the rate at which the right hand side converges.
can be written as , where the functionf is defined as
The function can have singularities in the complex plane (branch point singularities, poles or essential singularities), which limit the radius of convergence of the series. If the point is close to or on the boundary of the disk of convergence, the series for will converge very slowly. One can then improve the convergence of the series by means of a conformal mapping that moves the singularities such that the point that is mapped to ends up deeper in the new disk of convergence.
The conformal transform needs to be chosen such that , and one usually chooses a function that has a finite derivative at w = 0. One can assume that without loss of generality, as one can always rescale w to redefine . We then consider the function
Since , we have . We can obtain the series expansion of by putting in the series expansion of because ; the first terms of the series expansion for will yield the first terms of the series expansion for if . Putting in that series expansion will thus yield a series such that if it converges, it will converge to the same value as the original series.
A simple nonlinear sequence transformation is the Aitken extrapolation or delta-squared method,
defined by
This transformation is commonly used to improve the rate of convergence of a slowly converging sequence; heuristically, it eliminates the largest part of the absolute error.
Herbert H. H. Homeier: Scalar Levin-Type Sequence Transformations, Journal of Computational and Applied Mathematics, vol. 122, no. 1–2, p 81 (2000). Homeier, H. H. H. (2000). "Scalar Levin-type sequence transformations". Journal of Computational and Applied Mathematics. 122 (1–2): 81–147. arXiv:math/0005209. Bibcode:2000JCoAM.122...81H. doi:10.1016/S0377-0427(00)00359-9., arXiv:math/0005209.
Brezinski Claude and Redivo-Zaglia Michela : "The genesis and early developments of Aitken's process, Shanks transformation, the -algorithm, and related fixed point methods", Numerical Algorithms, Vol.80, No.1, (2019), pp.11-133.
Delahaye J. P. : "Sequence Transformations", Springer-Verlag, Berlin, ISBN 978-3540152835 (1988).
Sidi Avram : "Vector Extrapolation Methods with Applications", SIAM, ISBN 978-1-61197-495-9 (2017).
Brezinski Claude, Redivo-Zaglia Michela and Saad Yousef : "Shanks Sequence Transformations and Anderson Acceleration", SIAM Review, Vol.60, No.3 (2018), pp.646–669. doi:10.1137/17M1120725 .
Brezinski Claude : "Reminiscences of Peter Wynn", Numerical Algorithms, Vol.80(2019), pp.5-10.
Brezinski Claude and Redivo-Zaglia Michela : "Extrapolation and Rational Approximation", Springer, ISBN 978-3-030-58417-7 (2020).