Phase space

Diagram showing the periodic orbit of a mass-spring system in simple harmonic motion. (The velocity and position axes have been reversed from the standard convention in order to align the two diagrams)

The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the phase space usually consists of all possible values of the position and momentum parameters. It is the direct product of direct space and reciprocal space.[clarification needed] The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs.[1]

Principles

In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a phase line, while a two-dimensional system is called a phase plane. For every possible state of the system or allowed combination of values of the system's parameters, a point is included in the multidimensional space. The system's evolving state over time traces a path (a phase-space trajectory for the system) through the high-dimensional space. The phase-space trajectory represents the set of states compatible with starting from one particular initial condition, located in the full phase space that represents the set of states compatible with starting from any initial condition. As a whole, the phase diagram represents all that the system can be, and its shape can easily elucidate qualities of the system that might not be obvious otherwise. A phase space may contain a great number of dimensions. For instance, a gas containing many molecules may require a separate dimension for each particle's x, y and z positions and momenta (6 dimensions for an idealized monatomic gas), and for more complex molecular systems additional dimensions are required to describe vibrational modes of the molecular bonds, as well as spin around 3 axes. Phase spaces are easier to use when analyzing the behavior of mechanical systems restricted to motion around and along various axes of rotation or translation – e.g. in robotics, like analyzing the range of motion of a robotic arm or determining the optimal path to achieve a particular position/momentum result.

Evolution of an ensemble of classical systems in phase space (top). The systems are a massive particle in a one-dimensional potential well (red curve, lower figure). The initially compact ensemble becomes swirled up over time.

Conjugate momenta

In classical mechanics, any choice of generalized coordinates qi for the position (i.e. coordinates on configuration space) defines conjugate generalized momenta pi, which together define co-ordinates on phase space. More abstractly, in classical mechanics phase space is the cotangent bundle of configuration space, and in this interpretation the procedure above expresses that a choice of local coordinates on configuration space induces a choice of natural local Darboux coordinates for the standard symplectic structure on a cotangent space.

Statistical ensembles in phase space

The motion of an ensemble of systems in this space is studied by classical statistical mechanics. The local density of points in such systems obeys Liouville's theorem, and so can be taken as constant. Within the context of a model system in classical mechanics, the phase-space coordinates of the system at any given time are composed of all of the system's dynamic variables. Because of this, it is possible to calculate the state of the system at any given time in the future or the past, through integration of Hamilton's or Lagrange's equations of motion.

In low dimensions

For simple systems, there may be as few as one or two degrees of freedom. One degree of freedom occurs when one has an autonomous ordinary differential equation in a single variable, with the resulting one-dimensional system being called a phase line, and the qualitative behaviour of the system being immediately visible from the phase line. The simplest non-trivial examples are the exponential growth model/decay (one unstable/stable equilibrium) and the logistic growth model (two equilibria, one stable, one unstable).

The phase space of a two-dimensional system is called a phase plane, which occurs in classical mechanics for a single particle moving in one dimension, and where the two variables are position and velocity. In this case, a sketch of the phase portrait may give qualitative information about the dynamics of the system, such as the limit cycle of the Van der Pol oscillator shown in the diagram.

Here the horizontal axis gives the position, and vertical axis the velocity. As the system evolves, its state follows one of the lines (trajectories) on the phase diagram.

Phase portrait of the Van der Pol oscillator

Phase plot

A plot of position and momentum variables as a function of time is sometimes called a phase plot or a phase diagram. However the latter expression, "phase diagram", is more usually reserved in the physical sciences for a diagram showing the various regions of stability of the thermodynamic phases of a chemical system, which consists of pressure, temperature, and composition.

Phase portrait

Potential energy and phase portrait of a simple pendulum. Note that the x-axis, being angular, wraps onto itself after every 2π radians.
Phase portrait of damped oscillator, with increasing damping strength. The equation of motion is

In mathematics, a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane. Each set of initial conditions is represented by a different point or curve.

Phase portraits are an invaluable tool in studying dynamical systems. They consist of a plot of typical trajectories in the phase space. This reveals information such as whether an attractor, a repellor or limit cycle is present for the chosen parameter value. The concept of topological equivalence is important in classifying the behaviour of systems by specifying when two different phase portraits represent the same qualitative dynamic behavior. An attractor is a stable point which is also called a "sink". The repeller is considered as an unstable point, which is also known as a "source".

A phase portrait graph of a dynamical system depicts the system's trajectories (with arrows) and stable steady states (with dots) and unstable steady states (with circles) in a phase space. The axes are of state variables.

Phase integral

In classical statistical mechanics (continuous energies) the concept of phase space provides a classical analog to the partition function (sum over states) known as the phase integral.[2] Instead of summing the Boltzmann factor over discretely spaced energy states (defined by appropriate integer quantum numbers for each degree of freedom), one may integrate over continuous phase space. Such integration essentially consists of two parts: integration of the momentum component of all degrees of freedom (momentum space) and integration of the position component of all degrees of freedom (configuration space). Once the phase integral is known, it may be related to the classical partition function by multiplication of a normalization constant representing the number of quantum energy states per unit phase space. This normalization constant is simply the inverse of the Planck constant raised to a power equal to the number of degrees of freedom for the system.[3]

Applications

Illustration of how a phase portrait would be constructed for the motion of a simple pendulum
Time-series flow in phase space specified by the differential equation of a pendulum. The X axis corresponds to the pendulum's position, and the Y axis its speed.

Chaos theory

Classic examples of phase diagrams from chaos theory are:

Quantum mechanics

In quantum mechanics, the coordinates p and q of phase space normally become Hermitian operators in a Hilbert space.

But they may alternatively retain their classical interpretation, provided functions of them compose in novel algebraic ways (through Groenewold's 1946 star product). This is consistent with the uncertainty principle of quantum mechanics. Every quantum mechanical observable corresponds to a unique function or distribution on phase space, and conversely, as specified by Hermann Weyl (1927) and supplemented by John von Neumann (1931); Eugene Wigner (1932); and, in a grand synthesis, by H. J. Groenewold (1946). With J. E. Moyal (1949), these completed the foundations of the phase-space formulation of quantum mechanics, a complete and logically autonomous reformulation of quantum mechanics.[4] (Its modern abstractions include deformation quantization and geometric quantization.)

Expectation values in phase-space quantization are obtained isomorphically to tracing operator observables with the density matrix in Hilbert space: they are obtained by phase-space integrals of observables, with the Wigner quasi-probability distribution effectively serving as a measure.

Thus, by expressing quantum mechanics in phase space (the same ambit as for classical mechanics), the Weyl map facilitates recognition of quantum mechanics as a deformation (generalization) of classical mechanics, with deformation parameter ħ/S, where S is the action of the relevant process. (Other familiar deformations in physics involve the deformation of classical Newtonian into relativistic mechanics, with deformation parameter v/c;[citation needed] or the deformation of Newtonian gravity into general relativity, with deformation parameter Schwarzschild radius/characteristic dimension.)[citation needed]

Classical expressions, observables, and operations (such as Poisson brackets) are modified by ħ-dependent quantum corrections, as the conventional commutative multiplication applying in classical mechanics is generalized to the noncommutative star-multiplication characterizing quantum mechanics and underlying its uncertainty principle.

Thermodynamics and statistical mechanics

In thermodynamics and statistical mechanics contexts, the term "phase space" has two meanings: for one, it is used in the same sense as in classical mechanics. If a thermodynamic system consists of N particles, then a point in the 6N-dimensional phase space describes the dynamic state of every particle in that system, as each particle is associated with 3 position variables and 3 momentum variables. In this sense, as long as the particles are distinguishable, a point in phase space is said to be a microstate of the system. (For indistinguishable particles a microstate consists of a set of N! points, corresponding to all possible exchanges of the N particles.) N is typically on the order of the Avogadro number, thus describing the system at a microscopic level is often impractical. This leads to the use of phase space in a different sense.

The phase space can also refer to the space that is parameterized by the macroscopic states of the system, such as pressure, temperature, etc. For instance, one may view the pressure–volume diagram or temperature–entropy diagram as describing part of this phase space. A point in this phase space is correspondingly called a macrostate. There may easily be more than one microstate with the same macrostate. For example, for a fixed temperature, the system could have many dynamic configurations at the microscopic level. When used in this sense, a phase is a region of phase space where the system in question is in, for example, the liquid phase, or solid phase, etc.

Since there are many more microstates than macrostates, the phase space in the first sense is usually a manifold of much larger dimensions than in the second sense. Clearly, many more parameters are required to register every detail of the system down to the molecular or atomic scale than to simply specify, say, the temperature or the pressure of the system.

Optics

Phase space is extensively used in nonimaging optics,[5] the branch of optics devoted to illumination. It is also an important concept in Hamiltonian optics.

Medicine

In medicine and bioengineering, the phase space method is used to visualize multidimensional physiological responses.[6][7]

See also

Applications
Mathematics
Physics

References

  1. ^ Nolte, D. D. (2010). "The tangled tale of phase space". Physics Today. 63 (4): 33–38. Bibcode:2010PhT....63d..33N. doi:10.1063/1.3397041. S2CID 17205307.
  2. ^ Laurendeau, Normand M. (2005). Statistical Thermodynamics: Fundamentals and Applications. New York: Cambridge University Press. ISBN 0-521-84635-8.
  3. ^ Vu-Quoc, L. (2008). "Configuration integral". Archived from the original on April 28, 2012.
  4. ^ Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 01: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
  5. ^ Chaves, Julio (2015). Introduction to Nonimaging Optics, Second Edition. CRC Press. ISBN 978-1482206739.
  6. ^ Klabukov, I.; Tenchurin, T.; Shepelev, A.; Baranovskii, D.; Mamagulashvili, V.; Dyuzheva, T.; Krasilnikova, O.; Balyasin, M.; Lyundup, A.; Krasheninnikov, M.; Sulina, Y.; Gomzyak, V.; Krasheninnikov, S.; Buzin, A.; Zayratyants, G. (2023). "Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering". Biomedicines. 11 (3): 745. doi:10.3390/biomedicines11030745. ISSN 2227-9059. PMC 10044742. PMID 36979723.
  7. ^ Kirkland, M.A. (2004). "A phase space model of hemopoiesis and the concept of stem cell renewal". Experimental Hematology. 32 (6): 511–519. doi:10.1016/j.exphem.2004.02.013. hdl:10536/DRO/DU:30101092. ISSN 0301-472X. PMID 15183891.

Further reading

  • Nolte, D. D. (2015). Introduction to Modern Dynamics: Chaos, Networks, Space and Time. Oxford University Press. ISBN 978-0-19-965703-2.
  • Nolte, D. D. (2018). Galileo Unbound: A Path Across Life, the Universe and Everything. Oxford University Press. ISBN 978-0-19-880584-7.

Read other articles:

2015 turn-based strategy video game 2015 video gameSid Meier's StarshipsDeveloper(s)Firaxis GamesPublisher(s)2KSeriesCivilizationPlatform(s)Microsoft WindowsmacOSiOSReleaseMarch 12, 2015Genre(s)Turn-based strategy Sid Meier's Starships is a turn-based strategy video game developed by Firaxis Games and published by 2K. It was released on March 12, 2015 for Microsoft Windows, OS X, and iOS.[1] The game is a stand-alone title but shares the same universe as Civilization: Beyond Earth, pu...

 

Herstal Bendera Senjata api FN berukir Herstal (pengucapan bahasa Prancis: [ɛʁstal]; bahasa Wallonia: Hèsta), sebelumnya dinamakan Heristal atau Héristal, adalah sebuah kota madya di Provinsi Liège, Belgia. Terletak di sepanjang sungai Meuse, di wilayah Wallonia. Herstal diaglomerasi ke dalam Liège Raya. Kota madya Herstal mencakup bekas komune Milmort, Vottem, dan sebagian dari Liers (bagian lainnya termasuk ke dalam Juprelle). Pabrik senjata Fabrique Nationale atau biasa dise...

 

Algoritme Prim adalah sebuah algoritme dalam teori graf untuk mencari pohon rentang minimum untuk sebuah graf berbobot yang saling terhubung. Ini berarti bahwa sebuah himpunan bagian dari edge yang membentuk suatu pohon yang mengandung node, di mana bobot keseluruhan dari semua edge dalam pohon diminimalisasikan. Bila graf tersebut tidak terhubung, maka graf itu hanya memiliki satu pohon rentang minimum untuk satu dari komponen yang terhubung. Algoritme ini ditemukan pada 1930 oleh matematika...

6th SS Mountain Division Nord6. SS-Gebirgs-Division NordLambang divisi (Hagall rune)AktifSeptember 1941 – May 1945Negara Nazi GermanyCabang Waffen-SSTipe unitGebirgsjägerPeranPerang gunungJumlah personelDivisiTokohTokoh berjasaMatthias KleinheisterkampLothar DebesDivisi Gunung SS ke-6 Nord ( bahasa Jerman : 6. SS-Gebirgs-Division Nord) [1] adalah sebuah unit Jerman dari Waffen-SS selama Perang Dunia II, dibentuk pada Februari 1941 sebagai SS Kampfgruppe Nord (Pertempuran ...

 

J StyleAlbum studio karya Lee Joon-giDirilis17 April 2009GenreDance, popLabelMentor EntertainmentProduserYejeon Media J Style adalah album singel kedua[1] oleh Lee Joon-gi, yang diproduksi dengan musisi Kim Hyung Suk. Album ini terdiri dari 4 baru termasuk 3 lagu dari album sebelumnya My Jun, My Style. Daftar lagu J STYLE Soliloquy (혼잣말) (hon jat mal) I'm Ready Selfless Dedicated Trees (아낌없이 주는나무) (a kkim eops i ju neun na mu) One Word )한마디만) (han ma ...

 

Elm cultivar Ulmus 'Clusius'Ulmus 'Clusius', Netherlands.GenusUlmusHybrid parentage('Exoniensis' × U. wallichiana) × 'Bea Schwarz' selfedCultivar'Clusius'OriginWageningen, The Netherlands Ulmus 'Clusius' is a Dutch hybrid elm cultivar raised at the Dorschkamp Research Institute for Forestry & Landscape Planning, Wageningen, and released to commerce in 1983. 'Clusius' was derived from a crossing of the same Dutch clones that produced the fastigiate 'Lobel' released in 1973: '202' ('Exoni...

South Korean actress Not to be confused with Lee Hye-young (actress, born 1962). In this Korean name, the family name is Lee. Lee Hye-youngBorn (1971-12-22) December 22, 1971 (age 52)Incheon, South KoreaEducationIncheon City College - Business AdministrationOccupationsActresssingerbusinesswomanYears active1992–presentSpouses Lee Sang-min ​ ​(m. 2004; div. 2005)​ unnamed ​(m. 2011)​ Korean nameHangul이혜...

 

UniMás affiliate in El Paso, Texas This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: KTFN – news · newspapers · books · scholar · JSTOR (April 2022) (Learn how and when to remove this template message) KTFNEl Paso, TexasLas Cruces, New MexicoCiudad Juárez, ChihuahuaUnited States–MexicoCityEl Paso, TexasCha...

 

Main railroad station in Los Angeles, California For other stations with the same name, see Union Station (disambiguation).Los Angeles Union Station        The main building with tracks in the backgroundGeneral informationLocation800 North Alameda StreetLos Angeles, CaliforniaUnited StatesCoordinates34°03′19″N 118°14′07″W / 34.05515°N 118.23525°W / 34.05515; -118.23525Owned byLos Angeles County Metropolitan Transportation AuthorityPlatfo...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Kompetisi Sains Madrasah (KSM) adalah sebuah ajang berkompetisi dalam bidang sains yang diselenggarakan oleh Kementerian Agama Republik Indonesia. Kompetisi Sains Madrasah pada awalnya hanya diperuntukkan bagi siswa madrasah (ibtidaiyah, tsanawiyah dan...

 

زقاق الكوابيسNightmare Alley (بالإنجليزية)Nightmare Alley (بالفرنسية) الشعارمعلومات عامةالصنف الفني فيلم إثارة — فيلم مقتبس من رواية — فيلم دراما المواضيع  القائمة ... traveling carnival (en) [1] — مختال[1] — تأثير الثقة المبالغة[1] — knowledge of human nature (en) [1] — التفرس[1] — spiritism (en) &#...

 

В Википедии есть статьи о других людях с такой фамилией, см. Мидлер. Бетт Мидлерангл. Bette Midler Бетт Мидлер в 2021 году Основная информация Дата рождения 1 декабря 1945(1945-12-01)[1][2][…] (78 лет) Место рождения Гонолулу, США Страна  США[3] Профессии актриса, певица �...

Colombian author José Asunción SilvaBornJosé Asunción Silva Gómez(1865-11-27)27 November 1865Bogotá, ColombiaDied23 May 1896(1896-05-23) (aged 30)Bogotá, ColombiaOccupationPoet, author, political figure José Asunción Silva (27 November 1865 in Bogotá – 23 May 1896 in Bogotá) was a Colombian poet. He is considered one of the founders of Latin American Modernismo. Life Born to a wealthy and educated Bogotá family, Asunción Silva led a comfortable life. When he was just ten y...

 

Perahu gaya pajala Bugis-Makassar berujung ganda dengan tiang tripod dan layar miring persegi (beberapa di antaranya diturunkan dan disimpan di geladak), serta kemudi quarter yang digantung. Gambar ini dibuat tahun 1803 oleh seniman William Westall tentang perahu Bugis di pesisir pantai Arnhem, Australia. Kesempatan itu datang ketika Flinders bertemu dengan armada perahu Bugis yang datang dari Makassar ketika mereka mengumpulkan teripang. Perahu ini memiliki bobot 25 ton dan dipersenjatai den...

 

Syamsul Mu'arifSyamsul Mu'arif sebagai Menteri Negara Komunikasi dan Informasi Indonesia Menteri Negara Komunikasi dan Informasi Indonesia Ke-1Masa jabatan10 Agustus 2001 – 20 Oktober 2004PresidenMegawati SoekarnoputriWakil PresidenHamzah HazPendahuluJabatan baruPenggantiSofyan DjalilAnggota Dewan Perwakilan Rakyat Republik IndonesiaMasa jabatan1 Oktober 1987 – 10 Agustus 2001PenggantiGusti Iskandar Sukma AlamsyahDaerah pemilihanKalimantan SelatanAnggota Dewan Pe...

Pour les articles homonymes, voir Rodolphe Ier et Rodolphe d'Autriche (homonymie). Rodolphe Ier de Habsbourg Gisant de Rodolphe Ier de Habsbourg, dans la cathédrale de Spire.Titres « Roi des Romains » 23 septembre 1273 – 15 juillet 1291(17 ans, 9 mois et 22 jours) Duc d'Autriche 26 août 1278 – 27 décembre 1282(4 ans, 4 mois et 1 jour) Duc de Carinthie 26 août 1278 – 1er février 1286(7 ans, 5 mois et 6 jours) Biographie Dynas...

 

Vous lisez un « article de qualité » labellisé en 2012. Six personnalités de l'histoire de la relativité : 1. Isaac Newton 2. James Clerk Maxwell 3. Hendrik Lorentz 4. Henri Poincaré 5. Albert Einstein 6. Hermann Minkowski L’histoire de la relativité restreinte décrit le développement de propositions et constatations empiriques et conceptuelles, au sein de la physique théorique, qui ont permis d’aboutir à une nouvelle compréhension de l’espace et du temps. C...

 

نادي الأمجاد السعودي تأسس عام 1974 م - 1394 هـ الملعب صبيا  السعودية البلد السعودية  الدوري دوري الدرجة الثالثة السعودي 2020-2019 2 الإدارة المالك الهيئة العامة للرياضة الطقم الأساسي الطقم الاحتياطي تعديل مصدري - تعديل   نادي الأمجاد السعودي هو أحد أندية الدرجة الثالثة بمنط...

International cultural movement active from the 1920s to the 1950s SurrealismThe Treachery of Images, by René Magritte (1929), featuring the declaration Ceci n'est pas une pipe (This is not a pipe)Years active1920s–1950sLocationFrance, BelgiumMajor figuresBreton, Carrington, Dalí, Ernst, Fini, Magritte, OppenheimInfluencesSymbolismAbstract artMetaphysical paintingDadaInfluencedAbstract expressionismFantastic artPostmodern art Part of a series onSurrealism Surrealist Manifesto Surrealist c...

 

Railway station in Essex, EnglandNot to be confused with Royton railway station or Royston railway station. RoydonGeneral informationLocationRoydon, Epping Forest DistrictEnglandCoordinates51°46′30″N 0°02′10″E / 51.775°N 0.036°E / 51.775; 0.036Grid referenceTL405104Owned byNetwork RailManaged byGreater AngliaPlatforms2Other informationStation codeRYNClassificationDfT category EHistoryOpened1844Passengers2018/19 0.133 million2019/20 0.132 million2020/21 40,7...