Schwarzschild radius

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

The Schwarzschild radius is given as where G is the gravitational constant, M is the object mass, and c is the speed of light.[note 1][1][2]

History

In 1916, Karl Schwarzschild obtained the exact solution[3][4] to Einstein's field equations for the gravitational field outside a non-rotating, spherically symmetric body with mass (see Schwarzschild metric). The solution contained terms of the form and , which becomes singular at and respectively. The has come to be known as the Schwarzschild radius. The physical significance of these singularities was debated for decades. It was found that the one at is a coordinate singularity, meaning that it is an artifact of the particular system of coordinates that was used; while the one at is a spacetime singularity and cannot be removed.[5] The Schwarzschild radius is nonetheless a physically relevant quantity, as noted above and below.

This expression had previously been calculated, using Newtonian mechanics, as the radius of a spherically symmetric body at which the escape velocity was equal to the speed of light. It had been identified in the 18th century by John Michell[6] and Pierre-Simon Laplace.[7]

Parameters

The Schwarzschild radius of an object is proportional to its mass. Accordingly, the Sun has a Schwarzschild radius of approximately 3.0 km (1.9 mi),[8] whereas Earth's is approximately 9 mm (0.35 in)[8] and the Moon's is approximately 0.1 mm (0.0039 in).

Object's Schwarzschild radius
Object Mass Schwarzschild radius Actual radius Schwarzschild density or
Milky Way 1.6×1042 kg 2.4×1015 m (0.25 ly) 5×1020 m (52900 ly) 0.000029 kg/m3
SMBH in Phoenix A (one of the largest known black holes) 2×1041 kg 3×1014 m (~2000 AU) 0.0018 kg/m3
Ton 618 1.3×1041 kg 1.9×1014 m (~1300 AU) 0.0045 kg/m3
SMBH in NGC 4889 4.2×1040 kg 6.2×1013 m (~410 AU) 0.042 kg/m3
SMBH in Messier 87[9] 1.3×1040 kg 1.9×1013 m (~130 AU) 0.44 kg/m3
SMBH in Andromeda Galaxy[10] 3.4×1038 kg 5.0×1011 m (3.3 AU) 640 kg/m3
Sagittarius A* (SMBH in Milky Way)[11] 8.26×1036 kg 1.23×1010 m (0.08 AU) 1.068×106 kg/m3
SMBH in NGC 4395[12] 7.1568×1035 kg 1.062×109 m (1.53 R) 1.4230×108 kg/m3
Potential intermediate black hole in HCN-0.009-0.044[13][14] 6.3616×1034 kg 9.44×108 m (14.8 R🜨) 1.8011×1010 kg/m3
Resulting intermediate black hole from GW190521 merger[15] 2.823×1032 kg 4.189×105 m (0.066 R🜨) 9.125×1014 kg/m3
Sun 1.99×1030 kg 2.95×103 m 7.0×108 m 1.84×1019 kg/m3
Jupiter 1.90×1027 kg 2.82 m 7.0×107 m 2.02×1025 kg/m3
Saturn 5.683×1026 kg 8.42×10−1 m 6.03×107 m 2.27×1026 kg/m3
Neptune 1.024×1026 kg 1.52×10−1 m 2.47×107 m 6.97×1027 kg/m3
Uranus 8.681×1025 kg 1.29×10−1 m 2.56×107 m 9.68×1027 kg/m3
Earth 5.97×1024 kg 8.87×10−3 m 6.37×106 m 2.04×1030 kg/m3
Venus 4.867×1024 kg 7.21×10−3 m 6.05×106 m 3.10×1030 kg/m3
Mars 6.39×1023 kg 9.47×10−4 m 3.39×106 m 1.80×1032 kg/m3
Mercury 3.285×1023 kg 4.87×10−4 m 2.44×106 m 6.79×1032 kg/m3
Moon 7.35×1022 kg 1.09×10−4 m 1.74×106 m 1.35×1034 kg/m3
Human 70 kg 1.04×10−25 m ~5×10−1 m 1.49×1076 kg/m3
Planck mass 2.18×10−8 kg 3.23×10−35 m (2 lP) 1.54×1095 kg/m3

Derivation

The simplest way of deriving the Schwarzschild radius comes from the equality of the modulus of a spherical solid mass' rest energy with its gravitational energy:

So, the Schwarzschild radius reads as

Black hole classification by Schwarzschild radius

Black hole classifications
Class Approx.
mass
Approx.
radius
Supermassive black hole 105–1011 MSun 0.002–2000 AU
Intermediate-mass black hole 103 MSun 3 x 103 km ≈ RMars
Stellar black hole 10 MSun 30 km
Micro black hole up to MMoon up to 0.1 mm

Any object whose radius is smaller than its Schwarzschild radius is called a black hole. The surface at the Schwarzschild radius acts as an event horizon in a non-rotating body (a rotating black hole operates slightly differently). Neither light nor particles can escape through this surface from the region inside, hence the name "black hole".

Black holes can be classified based on their Schwarzschild radius, or equivalently, by their density, where density is defined as mass of a black hole divided by the volume of its Schwarzschild sphere. As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.

Supermassive black hole

A supermassive black hole (SMBH) is the largest type of black hole, though there are few official criteria on how such an object is considered so, on the order of hundreds of thousands to billions of solar masses. (Supermassive black holes up to 21 billion (2.1 × 1010M have been detected, such as NGC 4889.)[16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the singularity itself.) With that in mind, the average density of a supermassive black hole can be less than the density of water.

The Schwarzschild radius of a body is proportional to its mass and therefore to its volume, assuming that the body has a constant mass-density.[17] In contrast, the physical radius of the body is proportional to the cube root of its volume. Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (1.36 × 108 M), its physical radius would be overtaken by its Schwarzschild radius, and thus it would form a supermassive black hole.

It is thought that supermassive black holes like these do not form immediately from the singular collapse of a cluster of stars. Instead they may begin life as smaller, stellar-sized black holes and grow larger by the accretion of matter, or even of other black holes.[18]

The Schwarzschild radius of the supermassive black hole at the Galactic Center of the Milky Way is approximately 12 million kilometres.[11] Its mass is about 4.1 million M.

Stellar black hole

Stellar black holes have much greater average densities than supermassive black holes. If one accumulates matter at nuclear density (the density of the nucleus of an atom, about 1018 kg/m3; neutron stars also reach this density), such an accumulation would fall within its own Schwarzschild radius at about 3 M and thus would be a stellar black hole.

Micro black hole

A small mass has an extremely small Schwarzschild radius. A black hole of mass similar to that of Mount Everest[19][note 2] would have a Schwarzschild radius much smaller than a nanometre.[note 3] Its average density at that size would be so high that no known mechanism could form such extremely compact objects. Such black holes might possibly be formed in an early stage of the evolution of the universe, just after the Big Bang, when densities of matter were extremely high. Therefore, these hypothetical miniature black holes are called primordial black holes.

When moving to the Planck scale ≈ 10−35 m, it is convenient to write the gravitational radius in the form , (see also virtual black hole).[20]

Other uses

In gravitational time dilation

Gravitational time dilation near a large, slowly rotating, nearly spherical body, such as the Earth or Sun can be reasonably approximated as follows:[21] where:

  • tr is the elapsed time for an observer at radial coordinate r within the gravitational field;
  • t is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field);
  • r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);
  • rs is the Schwarzschild radius.

Compton wavelength intersection

The Schwarzschild radius () and the Compton wavelength () corresponding to a given mass are similar when the mass is around one Planck mass (), when both are of the same order as the Planck length ().

Gravitational radius and the Heisenberg Uncertainty Principle

Thus, or , which is another form of the Heisenberg uncertainty principle on the Planck scale. (See also Virtual black hole).[20][22]

Calculating the maximum volume and radius possible given a density before a black hole forms

The Schwarzschild radius equation can be manipulated to yield an expression that gives the largest possible radius from an input density that doesn't form a black hole. Taking the input density as ρ,

For example, the density of water is 1000 kg/m3. This means the largest amount of water you can have without forming a black hole would have a radius of 400 920 754 km (about 2.67 AU).

See also

Classification of black holes by type:

A classification of black holes by mass:

Notes

  1. ^ In geometrized unit systems, G and c are both taken to be unity, which reduces this equation to .
  2. ^ Using these values,[19] one can calculate a mass estimate of 6.3715×1014 kg.
  3. ^ One can calculate the Schwarzschild radius: 2 × 6.6738×10−11 m3⋅kg−1⋅s−2 × 6.3715×1014 kg / (299792458 m⋅s−1)2 = 9.46×10−13 m = 9.46×10−4 nm.

References

  1. ^ Kutner, Marc Leslie (2003). Astronomy: a physical perspective (2nd ed.). Cambridge, U.K.; New York: Cambridge University Press. p. 148. ISBN 978-0-521-82196-4.
  2. ^ Guidry, M. W. (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge; New York, NY: Cambridge University Press. p. 92. ISBN 978-1-107-19789-3.
  3. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften: 189. Bibcode:1916SPAW.......189S.
  4. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 424. Bibcode:1916skpa.conf..424S.
  5. ^ Wald, Robert (1984). General Relativity. The University of Chicago Press. pp. 152–153. ISBN 978-0-226-87033-5.
  6. ^ Schaffer, Simon (1979). "John Michell and Black Holes". Journal for the History of Astronomy. 10: 42–43. Bibcode:1979JHA....10...42S. doi:10.1177/002182867901000104. S2CID 123958527. Retrieved 4 June 2018.
  7. ^ Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009). "Michell, Laplace and the origin of the black hole concept" (PDF). Journal of Astronomical History and Heritage. 12 (2): 90. Bibcode:2009JAHH...12...90M. doi:10.3724/SP.J.1440-2807.2009.02.01. S2CID 55890996. Archived from the original (PDF) on 2 May 2014.
  8. ^ a b Anderson, James L. (2001). "V.C The Schwarzschild Field, Event Horizons, and Black Holes". In Meyer, Robert A. (ed.). Encyclopedia of Physical Science and Technology (Third Edition). Cambridge, Massachusetts: Academic Press. ISBN 978-0-12-227410-7. Retrieved 23 October 2023.
  9. ^ Event Horizon Telescope Collaboration (2019). "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole". Astrophysical Journal Letters. 875 (1): L1. arXiv:1906.11238. Bibcode:2019ApJ...875L...1E. doi:10.3847/2041-8213/AB0EC7. 6.5(7)×109 M = 1.29(14)×1040 kg.
  10. ^ Bender, Ralf; Kormendy, John; Bower, Gary; et al. (2005). "HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole". Astrophysical Journal. 631 (1): 280–300. arXiv:astro-ph/0509839. Bibcode:2005ApJ...631..280B. doi:10.1086/432434. S2CID 53415285. 1.7(6)×108 M = 0.34(12)×1039 kg.
  11. ^ a b Ghez, A. M.; et al. (December 2008). "Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits". Astrophysical Journal. 689 (2): 1044–1062. arXiv:0808.2870. Bibcode:2008ApJ...689.1044G. doi:10.1086/592738. S2CID 18335611.
  12. ^ Peterson, Bradley M.; Bentz, Misty C.; Desroches, Louis-Benoit; Filippenko, Alexei V.; Ho, Luis C.; Kaspi, Shai; Laor, Ari; Maoz, Dan; Moran, Edward C.; Pogge, Richard W.; Quillen, Alice C. (20 October 2005). "Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-Based Measurement of the Black Hole Mass". The Astrophysical Journal. 632 (2): 799–808. arXiv:astro-ph/0506665. Bibcode:2005ApJ...632..799P. doi:10.1086/444494. hdl:1811/48314. ISSN 0004-637X. S2CID 13886279.
  13. ^ "Hiding black hole found". phys.org. 1 March 2019. Retrieved 15 June 2022.
  14. ^ Takekawa, Shunya; Oka, Tomoharu; Iwata, Yuhei; Tsujimoto, Shiho; Nomura, Mariko (2019). "Indication of Another Intermediate-mass Black Hole in the Galactic Center". The Astrophysical Journal. 871 (1): L1. arXiv:1812.10733. Bibcode:2019ApJ...871L...1T. doi:10.3847/2041-8213/aafb07.
  15. ^ Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K. (2 September 2020). "Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521". The Astrophysical Journal. 900 (1): L13. arXiv:2009.01190. Bibcode:2020ApJ...900L..13A. doi:10.3847/2041-8213/aba493. ISSN 2041-8213. S2CID 221447444.
  16. ^ McConnell, Nicholas J. (8 December 2011). "Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies". Nature. 480 (7376): 215–218. arXiv:1112.1078. Bibcode:2011Natur.480..215M. doi:10.1038/nature10636. PMID 22158244. S2CID 4408896.
  17. ^ Robert H. Sanders (2013). Revealing the Heart of the Galaxy: The Milky Way and its Black Hole. Cambridge University Press. p. 36. ISBN 978-1-107-51274-0.
  18. ^ Pacucci, Fabio; Loeb, Abraham (1 June 2020). "Separating Accretion and Mergers in the Cosmic Growth of Black Holes with X-Ray and Gravitational-wave Observations". The Astrophysical Journal. 895 (2): 95. arXiv:2004.07246. Bibcode:2020ApJ...895...95P. doi:10.3847/1538-4357/ab886e. S2CID 215786268.
  19. ^ a b "How does the mass of one mole of M&M's compare to the mass of Mount Everest?" (PDF). School of Science and Technology, Singapore. March 2003. Archived from the original (PDF) on 10 December 2014. Retrieved 8 December 2014. If Mount Everest is assumed* to be a cone of height 8850 m and radius 5000 m, then its volume can be calculated using the following equation:
    volume = πr2h/3 [...] Mount Everest is composed of granite, which has a density of 2750 kg⋅m−3.
  20. ^ a b A.P. Klimets. (2023). Quantum Gravity. Current Research in Statistics & Mathematics, 2(1), 141-155.
  21. ^ Keeton, Charles (2014). Principles of astrophysics: using gravity and stellar physics to explore the cosmos. Undergraduate Lecture Notes in Physics. New York: Springer. p. 208. ISBN 978-1-4614-9236-8.
  22. ^ Klimets A.P., Philosophy Documentation Center, Western University-Canada, 2017, pp.25-30

Read other articles:

Arian13LahirArian Arifin Wardiman1 Agustus 1974 (umur 49)Bandung, IndonesiaPekerjaanMusisiSenimanPengusahaTahun aktif1992 - sekarangKarier musikGenreHardcore punkstoner rockstoner metalArtis terkaitSeringai PuppenAnggotaSeringaiMantan anggotaPuppen Arian Arifin Wardiman[1] (lahir 01 Agustus 1974)[2] adalah seorang musisi dan ilustrator berkebangsaan Indonesia. Ia dikenal sebagai pendiri dan vokalis grup hard rock Seringai. Masa Kecil Kakek Arian dari sisi ibunya ada...

 

Berbagai makanan dalam botram di sebuah gereja di Amerika Serikat. Botram, saweran makanan, atau urun makanan (Inggris: potluckcode: en is deprecated ) adalah pertemuan ketika setiap tamu menyumbangkan makanan yang berbeda dan unik yang biasanya dimasak sendiri untuk dibagikan.[1][2] Penggambaran Botram adalah acara ketika para peserta membawa hidangan untuk dimakan bersama dalam sebuah acara yang biasanya diselenggarakan oleh kelompok agama atau masyarakat karena mereka menye...

 

Gedung Putih Gedung Putih (Inggris: The White House) adalah kediaman resmi dan tempat kerja presiden Amerika Serikat. Terletak di 1600 Pennsylvania Avenue NW di Washington, D.C., dan telah menjadi kediaman setiap presiden AS sejak John Adams pada tahun 1800 ketika ibu kota negara dipindahkan dari Philadelphia ke Washington, D.C. Istilah Gedung Putih sering digunakan sebagai metonimia untuk presiden dan para penasihatnya. Gedung ini merupakan kediaman resmi presiden dan keluarganya selama ...

Struktur kimia fenol Sistem konjugasi terjadi dalam senyawa organik yang atom-atomnya secara kovalen berikatan tunggal dan ganda secara bergantian (C=C-C=C-C) dan memengaruhi satu sama lainnya membentuk daerah delokalisasi elektron. Elektron-elektron pada daerah delokalisasi ini bukanlah milik salah satu atom, melainkan milik keseluruhan sistem konjugasi ini. Contohnya, fenol (C6H5OH memiliki sistem 6 elektron di atas dan di bawah cincin planarnya sekaligus di sekitar gugus hidroksil. Sistem ...

 

German racing driver (1949–2001) Louis KragesBornKlaus Louis Kragés(1949-08-02)2 August 1949Bremen, West GermanyDied11 January 2001(2001-01-11) (aged 51)Atlanta, Georgia, United StatesNationality German24 Hours of Le Mans careerYears1978 – 1979, 1984 – 1986, 1998 – 1991, 1993TeamsPorsche Kremer RacingJoest RacingBest finish1st (1985)Class wins1 (1985) The '24h of Le Mans 1985' winning Joest-Porsche 956C of Ludwig, Barilla and Winter John Winter - Opel Team Joest - Opel Calibra V...

 

Winchester Royals Founded 1979 Field Bridgeforth Field Team History Winchester Royals (1979–present) Colors green and yellow Division Northern Championships 13 (1979) (1980) (1981) (1982) (1983) (1987) (1990) (1992) (1993) (1997) (2001) (2003) (2004) Runner-Up 1 (1999) President Donna Turrill[1] Head coach Jacob Mays[2] The Winchester Royals are a collegiate summer baseball team in Winchester, Virginia. They play in the Northern division of the Valley Baseball League. Found...

Canadian novelist Robertson DaviesCC OOnt FRSL FRSCDavies in 1982Born(1913-08-28)28 August 1913Thamesville, Ontario, CanadaDied2 December 1995(1995-12-02) (aged 82)Orangeville, Ontario, CanadaOccupationJournalist, playwright, professor, critic, novelistNationalityCanadianAlma materQueen's University (did not graduate) Balliol College, OxfordGenreNovels, plays, essays and reviewsNotable worksThe Deptford Trilogy, The Cornish Trilogy, The Salterton TrilogySpouseBrenda Ethe...

 

An ancient liquified sediment flow in Talara, Peru with nicely preserved dish structures. Liquefied flows (also known as liquified flows and fluidized flows) are types of sediment-gravity flows in which grains within the flow are kept in suspension by the upward movement of fluid. They form in granular substances where the concentration of suspended mud is too low to develop cohesive forces within the flow. As grains at the base of the suspension settle out, fluid that is displaced upward by ...

 

Battle between the Roman and Gallic empires For the battle in 451, see Battle of the Catalaunian Plains. 48°57′27″N 4°21′54″E / 48.9575°N 4.365°E / 48.9575; 4.365 Battle of ChâlonsPart of the Crisis of the Third CenturyChâlonsBattle of Châlons (274) (France)DateFebruary or March 274 CE (0274-02-22)LocationChâlons-en-Champagne, FranceResult Roman victory End of the Gallic Empire. Reunification of the Roman Empire.Belligerents Roman Empire Gallic Emp...

American auto racing team Corvette RacingFounded1999Team principal(s)Doug FehanCurrent seriesFIA World Endurance ChampionshipIMSA SportsCar ChampionshipFormer seriesAmerican Le Mans SeriesRolex Sports Car SeriesNoted driversEarl Bamber, Nicky Catsburg, Antonio García, Daniel Juncadella, Tommy Milner, Alexander SimsTeams'ChampionshipsAmerican Le Mans Series: 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2012, 2013IMSA SportsCar Championship: 2016, 2017, 2018, 2020, 2021FIA World Endurance C...

 

An Inescutcheon Part of a series onHeraldic achievement External devices in addition to the central coat of arms Escutcheon Field Supporter Crest Torse Mantling Helmet Crown Compartment Charge Motto (or slogan) Coat of arms Heraldry portalvte In heraldry, an inescutcheon is a smaller escutcheon that is placed within or superimposed over the main shield of a coat of arms, similar to a charge. This may be used in the following cases: as a simple mobile charge, for example as borne by the Fr...

 

Paul FrewMLAMinister for the EconomyIn office14 June 2021 – 6 July 2021Preceded byThe Lady Dodds of DuncairnSucceeded byGordon LyonsMember of the Northern Ireland Assemblyfor North AntrimIncumbentAssumed office 21 June 2010Preceded byIan Paisley, Jr Personal detailsBorn (1974-09-20) 20 September 1974 (age 49)Kells, Northern IrelandPolitical partyDUP Paul Frew (born 20 September 1974) is a Democratic Unionist Party (DUP) politician who served as Minister for the Economy fr...

American politician Isham G. HarrisPhotograph of Harris by Mathew BradyPresident pro tempore of the United States SenateIn officeJanuary 10, 1895 – March 3, 1895Preceded byMatt W. RansomSucceeded byWilliam P. FryeIn officeMarch 22, 1893 – January 7, 1895Preceded byCharles F. MandersonSucceeded byMatt W. RansomUnited States Senatorfrom TennesseeIn officeMarch 4, 1877 – July 8, 1897Preceded byHenry CooperSucceeded byThomas B. Turley16th Governor of Tennessee...

 

ملعب ميني ستاديمعلومات عامةالمنطقة الإدارية Les Corts (en) البلد  إسبانيا التشييد والافتتاحالمقاول الرئيسي نادي برشلونة أتلتيك الهدم 24 سبتمبر 2019 الاستعمالالرياضة كرة القدم المستضيف نادي برشلونة أتلتيكالمالك نادي برشلونةالإدارة نادي برشلونةمعلومات أخرىالطاقة الاستيعابي...

 

Astro Maya HDLogo Astro Maya HDDiluncurkan24 Juni 2013 (HD)Ditutup14 Januari 2019PemilikAstro Malaysia Holdings BerhadNegaraMalaysiaKantor pusatAstro Measat Broadcast Network System, Bukit Jalil, Kuala Lumpur, MalaysiaSaluran seindukAstro RiaAstro PrimaAstro OasisAstro CeriaAstro TVIQSitus webwww.astro.com.myKetersediaan IPTVSaluran 609 (HD)Singtel TV (Singapura) Astro Maya HD merupakan saluran kedua Malaysia milik televisi satelit Astro yang menampilkan drama, telemovie, hiburan, acara reali...

This article is about Ariana Grande song. For the song by the band The Maine, see American Candy. 2020 song by Ariana GrandeMy HairOfficial live performance artworkSong by Ariana Grandefrom the album Positions ReleasedOctober 30, 2020 (2020-10-30)Recorded2018–2020Studio Champagne Therapy (Los Angeles) Jungle City (New York City) Genre R&B neo soul Length2:38LabelRepublicComposer(s)GrandeBrownMonétParxScott StorchAnthony M. JonesCharles Scootie AndersonLyricist(s) Ariana...

 

United Nations resolution adopted in 1998 UN Security CouncilResolution 1185Polisario territory near TifaritiDate20 July 1998Meeting no.3,910CodeS/RES/1185 (Document)SubjectThe situation concerning Western SaharaVoting summary15 voted forNone voted againstNone abstainedResultAdoptedSecurity Council compositionPermanent members China France Russia United Kingdom United StatesNon-permanent members Bahrain Brazil Costa Rica Gabon Gambia...

 

Air traffic in Russia, 1970-2015 This is a list of the busiest airports in Russia, using data from the Federal Air Transport Agency. Overview Graphs are unavailable due to technical issues. There is more info on Phabricator and on MediaWiki.org. Annual passenger traffic at SVO DME VKO LED AER OVB SVX KRR UFA KZN airports. See Wikidata query. Russia's busiest airports by passenger traffic in 2019 (provisional) Includes airports with total traffic over 100,000 passengers. Source: Russian Feder...

نينجا ثيورينينجا ثيوريالشعارمعلومات عامةالبلد  المملكة المتحدة التأسيس 2004النوع مطور لعبة فيديوالشكل القانوني شركة عمومية محدودة المقر الرئيسي كامبريدج ، إنجلترا،المملكة المتحدةموقع الويب ninjatheory.com (الإنجليزية) المنظومة الاقتصاديةالشركة الأم إكس بوكس غيم ستوديوز ال...

 

For other places with the same name, see Sieraków. Village in Lesser Poland Voivodeship, PolandSierakówVillageSierakówCoordinates: 49°55′N 20°4′E / 49.917°N 20.067°E / 49.917; 20.067Country PolandVoivodeshipLesser PolandCountyMyśleniceGminaDobczyce Sieraków (Polish pronunciation: [ɕɛˈrakuf]) is a village in the administrative district of Gmina Dobczyce, within Myślenice County, Lesser Poland Voivodeship, in southern Poland.[1] It l...