Innermost stable circular orbit

The innermost stable circular orbit (often called the ISCO) is the smallest marginally stable circular orbit in which a test particle can stably orbit a massive object in general relativity.[1] The location of the ISCO, the ISCO-radius (), depends on the mass and angular momentum (spin) of the central object. The ISCO plays an important role in black hole accretion disks since it marks the inner edge of the disk.

The ISCO should not be confused with the Roche limit, the innermost point where a physical object can orbit before tidal forces break it up. The ISCO is concerned with theoretical test particles, not real objects. In general terms, the ISCO will be far closer to the central object than the Roche limit.

Basic concept

In classical mechanics, an orbit is achieved when a test particle's angular momentum is enough to resist the gravity force of the central object. As the test particle approaches the central object, the required amount of angular momentum grows, due to the inverse square law nature of gravitation. This can be seen in practical terms in artificial satellite orbits; in geostationary orbit at 35,786 kilometres (22,236 mi) the orbital speed is 10,800 kilometres per hour (6,700 mph), whereas in low Earth orbit it is 27,000 kilometres per hour (17,000 mph). Orbits can be achieved at any altitude, as there is no upper limit to velocity in classical mechanics.

General relativity (GR) introduces an upper limit to the speed of any object: the speed of light. If a test particle is lowered in orbit toward a central object in GR, the test particle will eventually require a speed greater than light to maintain an orbit. This defines the innermost possible instantaneous orbit, known as the innermost circular orbit, which lies at 1.5 times the Schwarzschild radius (for a Black Hole governed by the Schwarzschild metric). This distance is also known as the photon sphere.

In GR, gravity is not treated as a central force that pulls on objects; it instead operates by warping spacetime, thus bending the path that any test particle may travel. The ISCO is the result of an attractive term in the equation representing the energy of a test particle near the central object.[2] This term cannot be offset by additional angular momentum, and any particle within this radius will spiral into the center. The precise nature of the term depends on the conditions of the central object (i.e. whether a black hole has angular momentum).

Non-rotating black holes

For a non-spinning massive object, where the gravitational field can be expressed with the Schwarzschild metric, the ISCO is located at

where is the Schwarzschild radius of the massive object with mass . Thus, even for a non-spinning object, the ISCO radius is only three times the Schwarzschild radius, , suggesting that only black holes and neutron stars have innermost stable circular orbits outside of their surfaces. As the angular momentum of the central object increases, decreases.

Bound circular orbits are still possible between the ISCO and the so-called marginally bound orbit, which has a radius of

but they are unstable. Between and the photon sphere so-called unbound orbits are possible which are extremely unstable and which afford a total energy of more than the rest mass at infinity.

For a massless test particle like a photon, the only possible but unstable circular orbit is exactly at the photon sphere.[3] Inside the photon sphere, no circular orbits exist. Its radius is

The lack of stability inside the ISCO is explained by the fact that lowering the orbit does not free enough potential energy for the orbital speed necessary: the acceleration gained is too little. This is usually shown by a graph of the orbital effective potential which is lowest at the ISCO.

Rotating black holes

The case for rotating black holes is somewhat more complicated. The equatorial ISCO in the Kerr metric depends on whether the orbit is prograde (negative sign in ) or retrograde (positive sign in ):

where

with the rotation parameter .[4]

As the rotation rate of the black hole increases to the maximum of , the prograde ISCO, marginally bound radius and photon sphere radius decrease down to the event horizon radius at the so-called gravitational radius, still logically and locally distinguishable though.[5]

The retrograde radii hence increase towards

,
.

If the particle is also spinning there is a further split in ISCO radius depending on whether the spin is aligned with or against the black hole rotation.[6]

References

  1. ^ Misner, Charles; Thorne, Kip S.; Wheeler, John (1973). Gravitation. W. H. Freeman and Company. ISBN 0-7167-0344-0.
  2. ^ Nolte, David D. (28 August 2021). "Inner-Most Stable Circular Orbit". Galileo Unbound.
  3. ^ Carroll, Sean M. (December 1997). "Lecture Notes on General Relativity: The Schwarzschild Solution and Black Holes". arXiv:gr-qc/9712019. Bibcode:1997gr.qc....12019C. Retrieved 2017-04-11.
  4. ^ Bardeen, James M.; Press, William H.; Teukolsky, Saul A. (December 1972). "Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation". The Astrophysical Journal. 178: 347–370. Bibcode:1972ApJ...178..347B. doi:10.1086/151796.
  5. ^ Hirata, Christopher M. (December 2011). "Lecture XXVII: Kerr black holes: II. Precession, circular orbits, and stability" (PDF). Caltech. Retrieved 5 March 2018.
  6. ^ Jefremov, Paul I.; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S. (15 June 2015). "Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times". Physical Review D. 91 (12) 124030. arXiv:1503.07060. Bibcode:2015PhRvD..91l4030J. doi:10.1103/PhysRevD.91.124030. S2CID 119233768.
  • Leo C. Stein, Kerr calculator V2 [1]

Read other articles:

Badan Koordinasi Penanaman Modal BKPMGambaran umumDasar hukumPeraturan Presiden Nomor 64 Tahun 2021Bidang tugasPenanaman modalSloganInvest IndonesiaKepalaBahlil LahadaliaSekretaris UtamaIkmal LukmanDeputiBidang Hilirisasi Investasi StrategisHeldy Satrya PuteraBidang Kerja Sama Penanaman ModalRiyatnoBidang Pelayanan Penanaman ModalAchmad IdrusBidang Pengembangan Iklim Penanaman ModalYuliotBidang Pengendalian Pelaksanaan Penanaman ModalImam SoejoediBidang Perencanaan Penanaman ModalIndra D...

 

VimpelCom beralih ke halaman ini. Untuk perusahaan Rusia yang didirikan pada tahun 1992, lihat PJSC VimpelCom. VEON Ltd.SebelumnyaVimpelCom Ltd. (2009–2017)JenisPublikKode emitenNasdaq: VEONEuronext: VEONIndustriTelekomunikasiPendahuluPJSC VimpelCom dan KyivstarDidirikan2009; 15 tahun lalu (2009)PendiriDmitry Zimin Augie K. FabelaKantorpusatAmsterdam, BelandaWilayah operasiSeluruh duniaTokohkunciGennady Gazin (ketua) Kaan Terzioğlu dan Sergi Herrero (CEO)ProdukTelepon selule...

 

American politician (1887–1935) Charles Vilas TruaxFrontispiece of 1936's Charles Vilas Truax, Late a RepresentativeMember of the U.S. House of Representativesfrom Ohio's At-large districtIn officeMarch 4, 1933 – August 9, 1935Preceded byinactiveSucceeded byDaniel S. Earhart Personal detailsBorn(1887-02-01)February 1, 1887Sycamore, Ohio, USDiedAugust 9, 1935(1935-08-09) (aged 48)Washington, D.C., USResting placePleasant View Cemetery, Sycamore, OhioPolitical part...

Daun afrika Vernonia amygdalina TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsKladcampanulidsOrdoAsteralesFamiliAsteraceaeSubfamiliCichorioideaeTribusVernonieaeGenusVernoniaSpesiesVernonia amygdalina Delile, 1826 lbs Daun afrika papua tanaman daun afrika Daun afrika (Vernonia amygdalina) adalah tumbuhan semak yang berasal dari benua Afrika dan bagian lain dari Afrika, khususnya Nigeria, Kamerun dan Zimbabwe dan neg...

 

Otoritas Personalia Nasional人事院Jinji-inInformasi lembagaWilayah hukum JepangKantor pusat1-2-3, Kasumigaseki, Chiyoda-ku, Tokyo, JepangPejabat eksekutifNahomi Ichimiya, PresidenKōzō Yoshida, KomisarisHiroshi Tachibana, KomisarisHiroaki Furuya, Sekretaris JenderalLembaga indukKabinet JepangSitus webjinji.go.jp/en/ (dalam bahasa Inggris) Otoritas Personalia Nasional (人事院code: ja is deprecated , Jinjiin) di Jepang adalah lembaga khusus yang memberi nasihat kepada Perd...

 

مسجد ظلمات وضريح مير عمادمعلومات عامةنوع المبنى مسجد وضريحالمنطقة الإدارية أصفهان البلد  إيرانالصفة التُّراثيَّةتصنيف تراثي المعالم الوطنية الإيرانية[1] (1934 – ) معلومات أخرىالإحداثيات 32°40′N 51°41′E / 32.66°N 51.68°E / 32.66; 51.68 تعديل - تعديل مصدري - تعديل ويكي بيا...

St Patrick's Athletic F.C.Calcio Saints, SuperSaints, Pat's Segni distintivi Uniformi di gara Casa Trasferta Terza divisa Colori sociali Rosso, bianco Dati societari Città Dublino Nazione  Irlanda Confederazione UEFA Federazione FAI Campionato Premier Division Fondazione 1929 Presidente Garrett Kelleher Allenatore Jon Daly Stadio Richmond Park(5340[1] posti) Sito web www.stpatsfc.com Palmarès Titoli nazionali 8 Trofei nazionali 5 Coppe d'Irlanda3 Coppe di Lega irlandese1 Scudo...

 

La recessione globale del 1980-1982 (o recessione di inizio anni '80) è stata una grave crisi economica di inizio anni '80, causata in buona parte dalla seconda crisi petrolifera del 1979 a seguito della rivoluzione iraniana.[1] La crisi, che ebbe la sua fase più acuta tra il 1980 e il 1982, avrebbe prodotto delle conseguenze fino al 1985-1986 in varie nazioni, fino alla completa risoluzione di tutti i problemi in medio oriente e la sua stabilizzazione. Indice 1 Denominazione 2 Ante...

 

Pour les articles homonymes, voir Waldeck-Rousseau, Waldeck et Rousseau. Ne doit pas être confondu avec Waldeck Rochet. Pierre Waldeck-Rousseau Pierre Waldeck-Rousseau(photographié par Eugène Pirou). Fonctions Président du Conseil des ministres françaisMinistre de l'Intérieur et des Cultes 22 juin 1899 – 7 juin 1902(2 ans, 11 mois et 16 jours) Président Émile Loubet Gouvernement Waldeck-Rousseau Législature VIIe Prédécesseur Charles Dupuy Successeur Émile Combes ...

American Christian legal advocacy group Alliance Defending FreedomAbbreviationADFFormationMarch 25, 1993; 31 years ago (1993-03-25)[1]TypeNon-profit organizationTax ID no. 54-1660459HeadquartersScottsdale, Arizona[2]ChairmanTerry Schlossberg[3]President and CEOKristen Waggoner[4]Revenue (2022) $104,490,113[5]Expenses (2022)$81,311,475[5]Endowment (2022)$20,295,829[5]Employees (2022) 395[5]Volunteers (2022) 1,351...

 

This article is part of a series on theHistory of the United StatesFounders of the Mattachine Society, the first major American gay-rights advocacy organization, in 1951 Timeline and periodsPrehistoric and Pre-Columbian Erauntil 1607Colonial Era 1607–17651776–1789    American Revolution 1765–1783    Confederation Period 1783–17881789–1815    Federalist Era 1788–1801    Jeffersonian Era1801–18171815�...

 

Ahmad YaniLahir24 November 1962 (umur 61)Palembang, Sumatera Selatan, IndonesiaAlmamaterUniversitas Islam JakartaUniversitas IndonesiaUniversitas PadjadjaranPekerjaanPolitikusPartai politikPartai Masyumi Dr. H. Ahmad Yani, S.H., M.H. (lahir 24 November 1962) merupakan politikus asal Partai Masyumi, yang sebelumnya pernah menjadi politisi Partai Bulan Bintang dan Partai Persatuan Pembangunan (PPP). Ia Pernah menjabat sebagai Anggota Komisi III DPR RI periode 2009-2014 yang membidangi huk...

Persebaya SurabayaBerkas:Skuad persebaya 2018.jpgMusim 2019InvestorPT Persebaya IndonesiaPresiden Azrul AnandaHeadcoach Djajang NurjamanStadionStadion Gelora Bung Tomo, SurabayaLiga 1Sedang berlangsungPiala IndonesiaBabak 8 besarPiala PresidenPeringkat 2Pencetak gol terbanyakLiga: 4 golAmido BaldéSeluruh kompetisi: 18 golAmido BaldéJumlah penonton kandang tertinggi50,000 vs. Madura United(Semifinal leg-1 Piala Presiden, 3 april 2019) vs. Persib Bandung(Liga 1, 5 Juli 2019) Jumlah penonton k...

 

District in Taiwan District in Republic of ChinaWugu 五股區Wuku, GokoDistrictWugu DistrictWugu District in New Taipei CityCoordinates: 025°04′24″N 121°25′42″E / 25.07333°N 121.42833°E / 25.07333; 121.42833CountryRepublic of China (Taiwan)Special municipalityNew Taipei CityArea • Total34.86 km2 (13.46 sq mi)Population (February 2023) • Total91,719 • Density2,600/km2 (6,800/sq mi)Time zone+8Websi...

 

Country in West Africa Burkina FasoBurkĩna Faso (Mossi)𞤄𞤵𞤪𞤳𞤭𞤲𞤢 𞤊𞤢𞤧𞤮 (Fula)ߓߎߙߞߌߣߊ߫ ߝߊ߬ߛߏ߫ (Dyula) Flag Coat of arms Motto: Unité–Progrès–Justice (French)(Unity–Progress–Justice)Anthem: Une Seule Nuit / Ditanyè (French)(One Single Night / Hymn of Victory) Show globe Show map of AfricaCapitaland largest cityOuagadougou12°22′N 1°32′W / 12.367°N 1.533°W / 12.367; -1.533Off...

South Korean economist (born 1963) Ha-Joon ChangChang in 2011Born (1963-10-07) 7 October 1963 (age 60)[1]Seoul, South KoreaAcademic careerInstitutionSOAS University of LondonFieldDevelopment economicsSchool ortraditionInstitutional economicsAlma mater Seoul National University University of Cambridge DoctoraladvisorRobert RowthornJohn HicksInfluencesRobert RowthornJoseph StiglitzAwardsGunnar Myrdal Prize 2003, Wassily Leontief Prize 2005Information at IDEAS / ...

 

Convenzione europea per la salvaguardia dei diritti dell'uomo e delle libertà fondamentaliI paesi che aderiscono al trattatoFirma4 novembre 1950 LuogoRoma Efficacia3 settembre 1953 Parti46 (tutti i paesi membri del Consiglio d'Europa) DepositarioSegretario Generale del Consiglio d'Europa LingueInglese e francese voci di trattati presenti su Wikipedia La Convenzione europea per la salvaguardia dei diritti dell'uomo e delle libertà fondamentali o CEDU (in francese: Convention européenne des ...

 

This article is about the use of adaptive meshing in numerical analysis. For the use of adaptive techniques in computer graphics modelling, see Subdivision surface. In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to predetermined quantified grids ...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Schollen (Begriffsklärung) aufgeführt. Schollen Flunder (Platichthys flesus) Systematik Stachelflosser (Acanthopterygii) Barschverwandte (Percomorphaceae) Carangaria Ordnung: Carangiformes Teilordnung: Plattfische (Pleuronectoideo) Familie: Schollen Wissenschaftlicher Name Pleuronectidae Cuvier, 1816 Die Schollen oder Rechtsaugen-Flundern (Pleuronectidae) sind eine Familie der Plattfische. Schollen leben im Atlantik, ...

 

大阪市の平野(ひらの)区については「平野区」を、平野区内の地区については「平野 (大阪市)」を、大阪市中央区の平野町(ひらのまち)については「船場 (大阪市)」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2019�...