Geodetic effect

A representation of the geodetic effect, with values for Gravity Probe B.

The geodetic effect (also known as geodetic precession, de Sitter precession or de Sitter effect) represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, the vector could be the angular momentum of a gyroscope orbiting the Earth, as carried out by the Gravity Probe B experiment. The geodetic effect was first predicted by Willem de Sitter in 1916, who provided relativistic corrections to the Earth–Moon system's motion. De Sitter's work was extended in 1918 by Jan Schouten and in 1920 by Adriaan Fokker.[1] It can also be applied to a particular secular precession of astronomical orbits, equivalent to the rotation of the Laplace–Runge–Lenz vector.[2]

The term geodetic effect has two slightly different meanings as the moving body may be spinning or non-spinning. Non-spinning bodies move in geodesics, whereas spinning bodies move in slightly different orbits.[3]

The difference between de Sitter precession and Lense–Thirring precession (frame dragging) is that the de Sitter effect is due simply to the presence of a central mass, whereas Lense–Thirring precession is due to the rotation of the central mass. The total precession is calculated by combining the de Sitter precession with the Lense–Thirring precession.

Experimental confirmation

The geodetic effect was verified to a precision of better than 0.5% percent by Gravity Probe B, an experiment which measures the tilting of the spin axis of gyroscopes in orbit about the Earth.[4] The first results were announced on April 14, 2007, at the meeting of the American Physical Society.[5]

Formulae

To derive the precession, assume the system is in a rotating Schwarzschild metric. The nonrotating metric is

where c = G = 1.

We introduce a rotating coordinate system, with an angular velocity , such that a satellite in a circular orbit in the θ = π/2 plane remains at rest. This gives us

In this coordinate system, an observer at radial position r sees a vector positioned at r as rotating with angular frequency ω. This observer, however, sees a vector positioned at some other value of r as rotating at a different rate, due to relativistic time dilation. Transforming the Schwarzschild metric into the rotating frame, and assuming that is a constant, we find

with . For a body orbiting in the θ = π/2 plane, we will have β = 1, and the body's world-line will maintain constant spatial coordinates for all time. Now, the metric is in the canonical form

From this canonical form, we can easily determine the rotational rate of a gyroscope in proper time

where the last equality is true only for free falling observers for which there is no acceleration, and thus . This leads to

Solving this equation for ω yields

This is essentially Kepler's law of periods, which happens to be relativistically exact when expressed in terms of the time coordinate t of this particular rotating coordinate system. In the rotating frame, the satellite remains at rest, but an observer aboard the satellite sees the gyroscope's angular momentum vector precessing at the rate ω. This observer also sees the distant stars as rotating, but they rotate at a slightly different rate due to time dilation. Let τ be the gyroscope's proper time. Then

The −2m/r term is interpreted as the gravitational time dilation, while the additional −m/r is due to the rotation of this frame of reference. Let α' be the accumulated precession in the rotating frame. Since , the precession over the course of one orbit, relative to the distant stars, is given by:

With a first-order Taylor series we find

Thomas precession

One can attempt to break down the de Sitter precession into a kinematic effect called Thomas precession combined with a geometric effect caused by gravitationally curved spacetime. At least one author[6] does describe it this way, but others state that "The Thomas precession comes into play for a gyroscope on the surface of the Earth ..., but not for a gyroscope in a freely moving satellite."[7] An objection to the former interpretation is that the Thomas precession required has the wrong sign. The Fermi-Walker transport equation[8] gives both the geodetic effect and Thomas precession and describes the transport of the spin 4-vector for accelerated motion in curved spacetime. The spin 4-vector is orthogonal to the velocity 4-vector. Fermi-Walker transport preserves this relation. If there is no acceleration, Fermi-Walker transport is just parallel transport along a geodesic and gives the spin precession due to the geodetic effect. For the acceleration due to uniform circular motion in flat Minkowski spacetime, Fermi Walker transport gives the Thomas precession.

See also

Notes

  1. ^ Jean Eisenstaedt; Anne J. Kox (1988). Studies in the History of General Relativity. Birkhäuser. p. 42. ISBN 0-8176-3479-7.
  2. ^ de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi:10.1093/mnras/77.2.155.
  3. ^ Rindler, p. 254.
  4. ^ Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2009-05-02.
  5. ^ Kahn, Bob (April 14, 2007). "Was Einstein right? Scientists provide first public peek at Gravity Probe B results" (PDF). Stanford News. Retrieved January 3, 2023.
  6. ^ Rindler, Page 234
  7. ^ Misner, Thorne, and Wheeler, Gravitation, p. 1118
  8. ^ Misner, Thorne, and Wheeler, Gravitation, p. 165, pp. 175-176, pp. 1117-1121

References

Read other articles:

Basilika Santo Carolus Borromeus dan Maria Penolong Umat KristianiBasilika Minor Santo Carolus Borromeus dan Maria Penolong Umat KristianiSpanyol: Basílica María Auxiliadora y San Carloscode: es is deprecated Basilika Santo Carolus Borromeus dan Maria Penolong Umat KristianiLokasiBuenos AiresNegara ArgentinaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung Buenos Aires Basilika Santo Carolus Borromeus dan Maria P...

 

Ida HannasLahirIda Farida Hanas1956Kota Medan, IndonesiaPekerjaanpenyanyiSuami/istriIwan Setiawan (wafat 2015)Irfani Fahmi (m. 2019)AnakSissy PriscilliaJevin JulianVanesha PrescillaKerabatRinni Wulandari (menantu)Rifat Sungkar (menantu)Karier musikGenrepopTahun aktif1980-1985 Ida Farida Hanas merupakan seorang penyanyi berkebangsaan Indonesia pada era 80an. Karier Sejak tahun 1980 hingga 1985, Ida telah menghasilkan tiga album solo dan satu album duet, meski tidak ada albumnya yang benar-ben...

 

Francesinha Francesinha (dalam bahasa Portugis berarti Prancis kecil) adalah hidangan roti lapis yang berasal dari Porto, negara Portugal yang dibuat dengan roti, ham basah, linguiça, sosis segar seperti chipolata, steak atau daging panggang dan ditutupi dengan keju yang meleleh dan tomat tebal panas dan saus bir yang disajikan dengan kentang goreng. Pada April 2011, makanan ini dinobatkan oleh situs AOL Travel sebagai salah satu dari sepuluh sandwich terbaik di dunia.[1][2] ...

Awan Antarbintang LokalAwan antarbintanghidrogen hangat berkepadatan rendahDiagram awan materi lokal yang dilalui Tata Surya, dengan panah yang menunjukkan gerakan awan.Data pengamatanJarak0[1] ly   (0[1] pc)Ciri-ciri fisikDimensi30 ly (9,2 pc)SebutanLocal Cloud, LICLihat pula: Daftar nebulaAwan Antarbintang Lokal (Inggris: Local Interstellar Cloud, disebut juga Local Fluff) adalah awan antarbintang yang berdiameter kira-kira 30 tahun cah...

 

Members of the New South Wales Legislative Assembly who served in the 46th parliament held their seats from 1978 to 1981. They were elected at the 1978 election,[1] and at by-elections.[2][3][4] The Speaker was Laurie Kelly.[5] Name Party Electorate Term in office John Akister   Labor Monaro 1976–1988 Peter Anderson   Labor Nepean 1978–1988, 1989–1995 David Arblaster   Liberal Mosman 1972–1984 Brian Bannon   Labor Rockdale 1...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

1912–1956 protectorate in northwest Africa This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Spanish protectorate in Morocco – news · newspapers · books · scholar · JSTOR (April 2017) (Learn how and when to remove this message) Spanish protectorate in MoroccoProtectorado español en Marruecos (Spanish)�...

 

Antenna per le trasmissioni radio La radio è una tecnologia elettronica che utilizza la radiazione elettromagnetica, la cui frequenza (la media di fotoni in un intervallo di tempo) è al di sotto della luce visibile. Tale tecnologia viene utilizzata principalmente per telecomunicazioni o per altri scopi, come la localizzazione di oggetti, tramite i radar, o lo studio di fenomeni celesti, attraverso la radioastronomia. Indice 1 Terminologia 2 Storia 2.1 Tappe 3 Funzionamento 3.1 Le onde radio...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Africa Africa portalThis template is within the scope of WikiProject Africa, a collaborative effort to improve the coverage of Africa on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.AfricaWikipedia:WikiProject AfricaTemplate:WikiProject AfricaAfrica articles Food and drink F...

 

1933 film The TsarevichGerman film posterGermanDer Zarewitsch Directed byVictor JansonWritten byGabriela Zapolska (play)Bela Jenbach (libretto)Heinz Reichert [de] (libretto)Georg ZochProduced byEdward MühlertFritz ReinhardtStarringMártha EggerthHans SöhnkerEry BosCinematographyKarl PuthBruno TimmEdited byLudolf GrisebachRoger von NormanMusic byFranz LehárProductioncompanyPrima-TonfilmDistributed byUFARelease date 6 October 1933 (1933-10-06) Running time87 minut...

 

County in Georgia, United States Not to be confused with Calhoun, Georgia. County in GeorgiaCalhoun CountyCountyCalhoun County Courthouse in MorganLocation within the U.S. state of GeorgiaGeorgia's location within the U.S.Coordinates: 31°32′N 84°37′W / 31.53°N 84.62°W / 31.53; -84.62Country United StatesState GeorgiaFoundedFebruary 20, 1854; 170 years ago (1854)Named forJohn C. CalhounSeatMorganLargest cityMorganArea • To...

Pottery and porcelain from China Chinaware redirects here. For general information about the material, see Porcelain. A pair of complementary flasks from Yongle period (1402–1424) in the Ming dynasty Chinese ceramics are one of the most significant forms of Chinese art and ceramics globally. They range from construction materials such as bricks and tiles, to hand-built pottery vessels fired in bonfires or kilns, to the sophisticated Chinese porcelain wares made for the imperial court and fo...

 

Aviron aux Jeux olympiques d'été de 1948 Généralités Sport Aviron Organisateur(s) CIO Éditions 10e Lieu(x) Londres Date du 5 au 9 août 1948 Nations 27 Participants 310 Épreuves 7 Navigation Berlin 1936 Helsinki 1952 modifier Les épreuves d'aviron lors des Jeux olympiques d'été de 1948 ont eu lieu du 5 au 9 août 1948 à Londres au Royaume-Uni. Les compétitions rassemblent 310 athlètes, issus de 27 fédérations affiliées au Comité international olympique. Participation Partici...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article peut contenir un travail inédit ou des déclarations non vérifiées (janvier 2022). Vous pouvez aider en ajoutant des références ou en supprimant le contenu inédit. Voir la page de discussion pour plus de détails. L'Algérie a connu une multitude d'États indépendants avant l'avènement de l'Algérie moderne[1]. Période pré-islamique Numidie : 202 av. J.-C – 40 av. J.-C. Carte de la Nu...

Бульвар на проспекте Ленина в Ярославле Бульва́р (фр. boulevard, от нем. bollwerk — укреплённый земляной вал) — аллея или полоса зелёных насаждений вдоль (обычно посреди) улицы (первоначально — на месте прежних городских валов), вдоль берега реки, моря, предназначенная для пр...

 

Type of map projection Area-preserving maps redirects here. For the mathematical concept, see Measure-preserving dynamical system. The equal-area Mollweide projection In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equ...

 

Pour les articles homonymes, voir Carmichael. Stokely CarmichaelStokely Carmichael en 1960.BiographieNaissance 29 juin 1941Port-d'Espagne, Trinité-et-TobagoDécès 15 novembre 1998 (à 57 ans)Conakry, GuinéeSépulture Cimetière de CamerounNom de naissance Stokely Standiford Churchill CarmichaelNationalité Américaine, guinéenneFormation PhilosophieActivités Homme politique, militant, militant pour les droits de la personne humaine, révolutionnaireConjoint Miriam Makeba (de 1969 �...

كعكة الزبدةكعكة زبدة البندق البنيمعلومات عامةبلد المطبخ مطبخ أمريكي النوع كعك حرارة التقديم درجة حرارة الغرفةالمكونات الرئيسية زبدة، بيض، سكر، طحين، عامل تخمير.طبق مماثل كعكة غوي باترالقيمة الغذائيةالبروتينات 6 غرام لكل 100الدهون 20 غرام لكل 100تعديل - تعديل مصدري - تعديل وي...

 

Muslim scholar and historian (1002–1071) For other people named al-Baghdadi, see Baghdadi. Al-Khatib al-BaghdadiPersonalBorn24 Jumadi' al-Thani, 392 A.H/May 10, 1002 C.EHanikiya, Abbasid CaliphateDied7 Zulhijja, 463 A.H/ September 5, 1071 C.EBaghdad, Abbasid CaliphateReligionIslamEraIslamic golden ageRegionIraqDenominationSunniJurisprudenceShafi'i[1]CreedAsh'ari[1][2][3][4][5]Main interest(s)Hadith, Fiqh, HistoryNotable work(s)History of Baghd...