Interior Schwarzschild metric

In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.[1]

Mathematics

Spherical coordinates

The interior Schwarzschild metric is framed in a spherical coordinate system with the body's centre located at the origin, plus the time coordinate. Its line element is[2][3]

where

  • is the proper time (time measured by a clock moving along the same world line with the test particle).
  • is the speed of light.
  • is the time coordinate (measured by a stationary clock located infinitely far from the spherical body).
  • is the Schwarzschild radial coordinate. Each surface of constant and has the geometry of a sphere with measurable (proper) circumference and area (as by the usual formulas), but the warping of space means the proper distance from each shell to the center of the body is greater than .
  • is the colatitude (angle from north, in units of radians).
  • is the longitude (also in radians).
  • is the Schwarzschild radius of the body, which is related to its mass by , where is the gravitational constant. (For ordinary stars and planets, this is much less than their proper radius.)
  • is the value of the -coordinate at the body's surface. (This is less than its proper (measurable interior) radius, although for the Earth the difference is only about 1.4 millimetres.)

This solution is valid for . For a complete metric of the sphere's gravitational field, the interior Schwarzschild metric has to be matched with the exterior one,

at the surface. It can easily be seen that the two have the same value at the surface, i.e., at .

Other formulations

Defining a parameter , we get

We can also define an alternative radial coordinate and a corresponding parameter , yielding[4]

Properties

Volume

With and the area

the integral for the proper volume is

which is larger than the volume of a euclidean reference shell.

Density

The fluid has a constant density by definition. It is given by

where is the Einstein gravitational constant.[3][5] It may be counterintuitive that the density is the mass divided by the volume of a sphere with radius , which seems to disregard that this is less than the proper radius, and that space inside the body is curved so that the volume formula for a "flat" sphere shouldn't hold at all. However, is the mass measured from the outside, for example by observing a test particle orbiting the gravitating body (the "Kepler mass"), which in general relativity is not necessarily equal to the proper mass. This mass difference exactly cancels out the difference of the volumes.

Pressure and stability

The pressure of the incompressible fluid can be found by calculating the Einstein tensor from the metric. The Einstein tensor is diagonal (i.e., all off-diagonal elements are zero), meaning there are no shear stresses, and has equal values for the three spatial diagonal components, meaning pressure is isotropic. Its value is

As expected, the pressure is zero at the surface of the sphere and increases towards the centre. It becomes infinite at the centre if , which corresponds to or , which is true for a body that is extremely dense or large. Such a body suffers gravitational collapse into a black hole. As this is a time dependent process, the Schwarzschild solution does not hold any longer.[2][3]

Redshift

Gravitational redshift for radiation from the sphere's surface (for example, light from a star) is

From the stability condition follows .[3]

Visualization

Embedding of a Schwarzschild metric's slice in three-dimensional Euclidean space. The interior solution is the darker cap at the bottom.
This embedding should not be confused with the unrelated concept of a gravity well.

The spatial curvature of the interior Schwarzschild metric can be visualized by taking a slice (1) with constant time and (2) through the sphere's equator, i.e. . This two-dimensional slice can be embedded in a three-dimensional Euclidean space and then takes the shape of a spherical cap with radius and half opening angle . Its Gaussian curvature is proportional to the fluid's density and equals . As the exterior metric can be embedded in the same way (yielding Flamm's paraboloid), a slice of the complete solution can be drawn like this:[5][6]

In this graphic, the blue circular arc represents the interior metric, and the black parabolic arcs with the equation represent the exterior metric, or Flamm's paraboloid. The -coordinate is the angle measured from the centre of the cap, that is, from "above" the slice. The proper radius of the sphere – intuitively, the length of a measuring rod spanning from its centre to a point on its surface – is half the length of the circular arc, or .

This is a purely geometric visualization and does not imply a physical "fourth spatial dimension" into which space would be curved. (Intrinsic curvature does not imply extrinsic curvature.)

Examples

Here are the relevant parameters for some astronomical objects, disregarding rotation and inhomogeneities such as deviation from the spherical shape and variation in density.

Object (redshift)
Earth 6,370 km 8.87 mm 170,000,000 km
9.5 light-minutes
7.7 7×10−10
Sun 696,000 km 2.95 km 338,000,000 km
19 light-minutes
7.0′ 2×10−6
White dwarf with 1 solar mass 5000 km 2.95 km 200,000 km 1.4° 3×10−4
Neutron star with 2 solar masses 20 km 6 km 37 km 30° 0.15

History

The interior Schwarzschild solution was the first static spherically symmetric perfect fluid solution that was found. It was published on 24 February 1916, only three months after Einstein's field equations and one month after Schwarzschild's exterior solution.[1][2]

References

  1. ^ a b Karl Schwarzschild (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie" [On the gravitational field of a point mass following Einstein's theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften (in German). Berlin: 189–196. Bibcode:1916SPAW.......189S.
  2. ^ a b c Karl Schwarzschild (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie" [On the gravitational field of a ball of incompressible fluid following Einstein's theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften (in German). Berlin: 424–434. Bibcode:1916skpa.conf..424S.
  3. ^ a b c d Torsten Fließbach (2003). Allgemeine Relativitätstheorie [General Theory of Relativity] (in German) (4th ed.). Spektrum Akademischer Verlag. pp. 231–241. ISBN 3-8274-1356-7.
  4. ^ R. Burghardt (2009). "Interior Schwarzschild Solution and Free Fall" (PDF). Austrian Reports on Gravitation. Archived from the original (PDF) on 2017-03-05. Retrieved 2016-05-05.
  5. ^ a b P. S. Florides (1974). "A New Interior Schwarzschild Solution". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 337 (1611): 529–535. Bibcode:1974RSPSA.337..529F. doi:10.1098/rspa.1974.0065. JSTOR 78530. S2CID 122449954.
  6. ^ R. Burghardt (2009). "New Embedding of Schwarzschild Geometry. II. Interior Solution" (PDF). Austrian Reports on Gravitation. Archived from the original (PDF) on 2016-05-08. Retrieved 2016-05-03.

Read other articles:

My Father Is StrangePoster promosi My Father is StrangeGenreKeluargaDramaDitulis olehPark Kyung-sooSutradaraLee Jae-sangPemeranKim Yeong-cheolKim Hae-sookRyu Soo-youngLee Yoo-riLee JoonJung So-minNegara asal Korea SelatanBahasa asliKoreaJmlh. episode52ProduksiProduser eksekutifBae Kyung-sooTeddy Hoon-tak JungHwang Ki-yongProduserCho WoongLokasi produksiKorea SelatanDurasi65-70 menitRumah produksiiHQDistributorKBSRilis asliJaringanKBS2Format gambar1080i (HDTV)Format audioDolby DigitalRilis4 M...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Latin Klasik LINGVA LATINA lingua latina Prasasti Latin di Koloseum Pengucapanpengucapan Latin: [laˈtiːnɪtaːs]Dituturkan diRepublik Romawi, Kekaisaran RomawiWilayahRomawi KunoEra75 SM hingga abad ke-3 M, berkembang menjadi Bahasa Latin Akhir Rumpun bahasaIndo-Eropa ItalikLatinLatin Klasik Bentuk awalLatin Kuno Latin Klasik...

 

Cet article donne la liste par ordre alphabétique des 579 députés français de la Ire législature (1958-1962), soit proclamés élus les 23 et 30 novembre 1958, soit proclamés élus ou maintenus en fonction[1] dans les Territoires d'outre-mer. Les modifications apportées en cours de législature sont indiquées en notes. Cette législature, ouverte le 9 décembre 1958, s'est terminée par la dissolution de l'Assemblée le 9 octobre 1962. Elle a été marquée par le maintien en fonctio...

Perang Salib AragonBagian dari Perang Salib dan Perang Vespiri SisiliaFresko dari Puri Cardona yang menggambarkan Pengepungan Girona pada tahun 1285; sekarang dilestarikan di Museu Nacional d'Art de CatalunyaTanggal1284–1285LokasiKepangeranan CatalunyaHasil Kemenangan AragonPihak terlibat Kerajaan Prancis Kerajaan Mallorca Kerajaan Navarra Republik Genova Takhta AragonTokoh dan pemimpin Philippe III dari Prancis Charles dari Valois Jaume II dari Mallorca Pero III dari Aragon Roger dari Laur...

 

Raymond KnopsRaymond Knops pada 2018 Pelaksana Jabatan Menteri Dalam Negeri dan Hubungan KerajaanMasa jabatan1 November 2019 – 14 April 2020Perdana MenteriMark RuttePendahuluKajsa OllongrenPenggantiKajsa OllongrenSekretaris Negara untuk Dalam Negeri dan Hubungan KerajaanMasa jabatan14 April 2020 – 10 Januari 2022PenggantiAlexandra van HuffelenMasa jabatan26 Oktober 2017 – 1 November 2019Perdana MenteriMark RuttePendahuluAnk Bijleveld (2010)PenggantiPetahanaAng...

 

Constantin Fehrenbach Kanselir JermanMasa jabatan25 Juni 1920 – 4 Mei 1921PresidenFriedrich EbertPendahuluHermann MüllerPenggantiJoseph Wirth Informasi pribadiLahir(1852-01-11)11 Januari 1852Meninggal26 Maret 1926(1926-03-26) (umur 74)Partai politikPartai TengahTanda tanganSunting kotak info • L • B Constantin Fehrenbach, terkadang Konstantin Fehrenbach (11 Januari 1852 – 26 Maret 1926), adalah seorang politikus Katolik Jerman yang menjadi salah ...

RCTI Network Jawa BaratPT RCTI SatuBandung, Jawa BaratIndonesiaSaluranDigital: 41 UHF (DVB-T2)Virtual: 28SloganKebanggaan Bersama Milik BangsaRCTI Oke (tagline)PemrogramanBahasaBahasa IndonesiaAfiliasiRCTIKepemilikanPemilikMedia Nusantara CitraStasiun seinduk MNCTV Jawa Barat (2006-sekarang) GTV Bandung (2006-sekarang) iNews Bandung (2008-sekarang)Sebelumnya: SCTV Surabaya (1991-1993) SCTV Denpasar (1991-1993) RiwayatSiaran perdana1 Mei 1991 (1991-05-01) (sebagai RCTI Bandung)24 Agustus ...

 

Вито Корлеонеитал. Vito Corleone Марлон Брандо в роли Вито Корлеоне в фильме «Крёстный отец» 1972 года. Создатель Марио Пьюзо Произведения Книги:«Крёстный отец»«Сицилиец»Фильмы:«Крёстный отец»«Крёстный отец 2»Игры:«The Godfather: The Game» Пол мужской Возраст 68 лет (на момент смерти) Д...

 

List of events ← 1863 1862 1861 1864 in Japan → 1865 1866 1867 Decades: 1840s 1850s 1860s 1870s 1880s See also:Other events of 1864History of Japan  • Timeline  • Years Events from the year 1864 in Japan. Incumbents Emperor: Kōmei Events August 20 - Kinmon incident Births October 8 – Kikunae Ikeda, chemist (d. 1936)[1] Deaths vteYears in Japan (538–present)Asuka period (538–710) 646 660 684 703 Nara period (710–794) 721 729 737 ...

Borough in Sussex County, New Jersey, US Borough in New Jersey, United StatesStanhope, New JerseyBoroughThe Stanhope HouseMap of Stanhope in Sussex County. Inset: Location of Sussex County highlighted in the State of New Jersey.Census Bureau map of Stanhope, New JerseyStanhopeLocation in Sussex CountyShow map of Sussex County, New JerseyStanhopeLocation in New JerseyShow map of New JerseyStanhopeLocation in the United StatesShow map of the United StatesCoordinates: 40°54′48″N 74°42′13...

 

German political think tank and lobby group Rosa Luxemburg FoundationRosa-Luxemburg-StiftungThe headquarters of the Rosa Luxemburg FoundationAbbreviationRLSNamed afterRosa LuxemburgFormation1990Legal statusNonprofit foundationHeadquartersBerlinChairDagmar EnkelmannDeputyThomas HändelDeputySabine ReinerExecutive directorDaniela TrochowskiAffiliationsDie LinkeStaff 183 (2012)Websitewww.rosalux.de The Rosa Luxemburg Foundation (German: Rosa-Luxemburg-Stiftung), named in recognition of Rosa Luxe...

 

Bungkusan plasma yang mengering yang digunakan oleh militer Britania Raya dan Amerika Serikat selama Perang Dunia Kedua. Plasma darah adalah komponen darah berbentuk cairan berwarna kuning yang menjadi medium sel-sel darah, di mana sel darah ditutup. 55% dari jumlah/volume darah merupakan plasma darah. Volume plasma darah terdiri dari 90% berupa air dan 10% berupa larutan protein, glukosa, faktor koagulasi, ion mineral, hormon dan karbon dioksida. Plasma darah juga merupakan medium pada prose...

中国人民解放军通信兵中国人民解放军军旗存在時期1930 - 至今國家或地區 中华人民共和国部門 中国人民解放军 中国人民解放军通信兵,是中国人民解放军兵种,在中国人民解放军陆军、中国人民解放军海军、中国人民解放军空军、中国人民解放军火箭军中均有设置。 沿革 1930年5月,全国红军代表会议讨论通过的《中国工农红军编制草案》中,统一规定了通信部队的编�...

 

Pour les articles homonymes, voir Wallace et William Wallace (homonymie). Cet article est une ébauche concernant un footballeur écossais. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. William Wallace Willie Wallace (à droite) et Tommy Gemmell (1971). Biographie Nationalité Britannique Nat. sportive Écossais Naissance 23 juin 1940 (84 ans) Kirkintilloch Poste Attaquant et attaquant intérieur (en) Par...

 

CA BanfieldCalcio El Taladro (Il Trapano) Segni distintiviUniformi di gara Casa Trasferta Terza divisa Colori sociali Verde, bianco Dati societariCittàBanfield Nazione Argentina ConfederazioneCONMEBOL Federazione AFA CampionatoPrimera División Fondazione1896 Presidente Lucìa Barbuto Allenatore Javier Sanguinetti StadioFlorencio Sola(33.351 posti) Sito webwww.clubabanfield.org PalmarèsTitoli nazionali1 Campionato argentino Trofei nazionali1 Copa de Honor Municipalidad de Buenos Aires ...

 Nota: RAE redireciona para este artigo. Para a emissora de rádio argentina, veja Radiodifusión Argentina al Exterior. Regiões administrativas especiais da China (Macau e Hong Kong). Região Administrativa Especial (RAE) é uma divisão administrativa de nível provincial da República Popular da China. Cada RAE tem um chefe de governo executivo como chefe da região e um chefe de governo. A República Popular da China, possui duas Regiões Administrativas Especiais, Hong Kong e M...

 

One of the treaties that ended World War I For other treaties with this name, see Treaty of Saint-Germain-en-Laye. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Treaty of Saint-Germain-en-Laye 1919 – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this messag...

 

Archaeology museum in Çekirge, BursaBursa Archaeological MuseumBursa Arkeoloji MüzesiBursa MuseumLocation of Bursa Museum in TurkeyEstablishedAugust 19, 1902; 122 years ago (1902-08-19)LocationKültürparkiçi, Çekirge, BursaCoordinates40°11′45″N 29°02′28″E / 40.19583°N 29.04111°E / 40.19583; 29.04111TypeArchaeology museum Ancient pottery in the museum. Bursa Archaeological Museum (Turkish: Bursa Arkeoloji Müzesi), shortly Bursa Museum...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 1913 في إيطاليامعلومات عامةالسنة 1913 1912 في إيطاليا 1914 في إيطاليا تعديل - تعديل مصدري - تعديل ويكي بيانات سنوا...

 

Cantata by Johann Sebastian Bach Gottlob! nun geht das Jahr zu EndeBWV 28Church cantata by J. S. BachThomaskirche, Leipzig 1885Occasion1st Sunday after ChristmasPerformed30 December 1725 (1725-12-30): Leipzig Gottlob! nun geht das Jahr zu Ende (Praise God! Now the year comes to an end),[1] BWV 28,[a] is a church cantata by Johann Sebastian Bach for the Sunday after Christmas. He first performed it on 30 December 1725. History and text Bach composed the cant...