Isotropy

A sphere is isotropic

In physics and geometry, isotropy (from Ancient Greek ἴσος (ísos) 'equal' and τρόπος (trópos) 'turn, way') is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix a- or an-, hence anisotropy. Anisotropy is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented.

Mathematics

Within mathematics, isotropy has a few different meanings:

Isotropic manifolds
A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity.
Isotropic quadratic form
A quadratic form q is said to be isotropic if there is a non-zero vector v such that q(v) = 0; such a v is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vector is an isotropic line.
Isotropic coordinates
Isotropic coordinates are coordinates on an isotropic chart for Lorentzian manifolds.
Isotropy group
An isotropy group is the group of isomorphisms from any object to itself in a groupoid.[dubiousdiscuss][1] An isotropy representation is a representation of an isotropy group.
Isotropic position
A probability distribution over a vector space is in isotropic position if its covariance matrix is the identity.
Isotropic vector field
The vector field generated by a point source is said to be isotropic if, for any spherical neighborhood centered at the point source, the magnitude of the vector determined by any point on the sphere is invariant under a change in direction. For an example, starlight appears to be isotropic.

Physics

Quantum mechanics or particle physics
When a spinless particle (or even an unpolarized particle with spin) decays, the resulting decay distribution must be isotropic in the rest frame of the decaying particle - regardless of the detailed physics of the decay. This follows from rotational invariance of the Hamiltonian, which in turn is guaranteed for a spherically symmetric potential.
Gases
The kinetic theory of gases also exemplifies isotropy. It is assumed that the molecules move in random directions and as a consequence, there is an equal probability of a molecule moving in any direction. Thus when there are many molecules in the gas, with high probability there will be very similar numbers moving in one direction as any other, demonstrating approximate isotropy.
Fluid dynamics
Fluid flow is isotropic if there is no directional preference (e.g. in fully developed 3D turbulence). An example of anisotropy is in flows with a background density as gravity works in only one direction. The apparent surface separating two differing isotropic fluids would be referred to as an isotrope.
Thermal expansion
A solid is said to be isotropic if the expansion of solid is equal in all directions when thermal energy is provided to the solid.
Electromagnetics
An isotropic medium is one such that the permittivity, ε, and permeability, μ, of the medium are uniform in all directions of the medium, the simplest instance being free space.
Optics
Optical isotropy means having the same optical properties in all directions. The individual reflectance or transmittance of the domains is averaged for micro-heterogeneous samples if the macroscopic reflectance or transmittance is to be calculated. This can be verified simply by investigating, for example, a polycrystalline material under a polarizing microscope having the polarizers crossed: If the crystallites are larger than the resolution limit, they will be visible.
Cosmology
The cosmological principle, which underpins much of modern cosmology (including the Big Bang theory of the evolution of the observable universe), assumes that the universe is both isotropic and homogeneous, meaning that the universe has no preferred location (is the same everywhere) and has no preferred direction.[2] Observations[which?] made in 2006 suggest that, on distance-scales much larger than galaxies, galaxy clusters are "Great" features, but small compared to so-called multiverse scenarios.[citation needed]

Materials science

This sand grain made of volcanic glass is isotropic, and thus, stays extinct when rotated between polarization filters on a petrographic microscope

In the study of mechanical properties of materials, "isotropic" means having identical values of a property in all directions. This definition is also used in geology and mineralogy. Glass and metals are examples of isotropic materials.[3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate.

Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict. Anisotropic materials can be tailored to the forces an object is expected to experience. For example, the fibers in carbon fiber materials and rebars in reinforced concrete are oriented to withstand tension.

In industrial processes, such as etching steps, "isotropic" means that the process proceeds at the same rate, regardless of direction. Simple chemical reaction and removal of a substrate by an acid, a solvent or a reactive gas is often very close to isotropic. Conversely, "anisotropic" means that the attack rate of the substrate is higher in a certain direction. Anisotropic etch processes, where vertical etch-rate is high but lateral etch-rate is very small, are essential processes in microfabrication of integrated circuits and MEMS devices.

Antenna (radio)

An isotropic antenna is an idealized "radiating element" used as a reference; an antenna that broadcasts power equally (calculated by the Poynting vector) in all directions. The gain of an arbitrary antenna is usually reported in decibels relative to an isotropic antenna, and is expressed as dBi or dB(i).

In cells (a.k.a. muscle fibers), the term "isotropic" refers to the light bands (I bands) that contribute to the striated pattern of the cells.

While it is well established that the skin provides an ideal site for the administration of local and systemic drugs, it presents a formidable barrier to the permeation of most substances.[4] Recently, isotropic formulations have been used extensively in dermatology for drug delivery.[5]

Computer science

Imaging
A volume such as a computed tomography is said to have isotropic voxel spacing when the space between any two adjacent voxels is the same along each axis x, y, z. E.g., voxel spacing is isotropic if the center of voxel (i, j, k) is 1.38 mm from that of (i+1, j, k), 1.38 mm from that of (i, j+1, k) and 1.38 mm from that of (i, j, k+1) for all indices i, j, k.[6]

Other sciences

Economics and geography
An isotropic region is a region that has the same properties everywhere. Such a region is a construction needed in many types of models.

See also

References

  1. ^ A groupoid is a category where all morphisms are isomorphisms, i.e., invertible. If is any object, then denotes its isotropy group: the group of isomorphisms from to .
  2. ^ "WMAP Big Bang Theory". Map.gsfc.nasa.gov. Retrieved 2014-03-06.
  3. ^ "Anisotropy and Isotropy". Archived from the original on 2012-05-31. Retrieved 2012-05-26.
  4. ^ Landman L. "The Epidermal Permeability Barrier". Anatomy and Embryology (Berl) 1988; 178:1-13 [1]
  5. ^ Gregoriadis G. "Lipsomes in Drug Delivery". Harwood Academic Publishers, 1993. [2]
  6. ^ Zwanenburg, Alex; Leger, Stefan; Vallières, Martin; Löck, Steffen (2016-12-21). "Image biomarker standardisation initiative". Radiology. 295 (2): 328–338. arXiv:1612.07003. doi:10.1148/radiol.2020191145. PMC 7193906. PMID 32154773.

Read other articles:

Michael Chertoff Michael Chertoff (lahir 28 November 1953) adalah seorang jaksa Amerika Serikat yang menjabat sebagai Menteri Keamanan Dalam Negeri Amerika Serikat kedua di bawah kepemimpinan Presiden George W. Bush. Ia adalah salah satu perancang USA PATRIOT Act. Pranala luar Wikimedia Commons memiliki media mengenai Michael Chertoff. Michael Chertoff di Biographical Directory of Federal Judges, publikasi ranah umum milik Federal Judicial Center. Kemunculan di C-SPAN Pengawasan otoritas Umum...

 

 

Kudlow & CompanyGenretalk showPresenterLawrence KudlowNegara asal Amerika SerikatBahasa asliInggrisProduksiDurasi60 menitRilis asliJaringanCNBCRilis14 Februari 2005 –28 Maret 2014 Kudlow & Company adalah program berita tentang politik dan bisnis Amerika Serikat bersama Lawrence Kudlow dan ditayangkan di CNBC. pada pukul 07:00 ET. Acara ini diawali oleh America Now dan Kudlow & Cramer saat Jim Cramer melemparkan koin pada penutup dari episode terakhir America Now. Cram...

 

 

Electrochemical technique This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (May 2023) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by add...

Aleksandr Vasilyevich FedotovLahir(1932-06-23)23 Juni 1932Stalingrad, Uni Soviet (sekarang Rusia)Meninggal4 April 1984(1984-04-04) (umur 51)Kawasan Moskwa, USSRPangkat Mayjen PenerbanganPenghargaanPahlawan Uni SovietPenghargaan Lenin Alexander Vasilyevich Fedotov (23 Juni 1932 – 4 April 1984) adalah seorang pilot uji coba Uni Soviet. Ia meraih gelar Pahlawan Uni Soviet.[1] Referensi ^ Герои Страны Pengawasan otoritas Umum ISNI 1 VIAF 1 WorldCat Perpusta...

 

 

Protes terhadap Union Carbide. Union Carbide Corporation adalah kelompok bisnis kimia Amerika Serikat yang bermarkas di Danbury, Connecticut. Perusahaan ini didirikan pada tahun 1917. Lingkaran kerja utama perusahaan ini adalah terutama produksi zat kimia dasar dan plastik. Union Carbide terkenal atas pemecatan besar-besaran atas racun yang diakibatkan dari kesalahan tindakan dalam Tragedi Bhopal, di negara bagian Madhya Pradesh, India, pada tahun 1984. Ribuan orang tewas dalam insiden ini. D...

 

 

Claimant to Parthian throne (c.190) Osroes IICoin of Osroes II, Ecbatana mintRival Parthian kingReign190PredecessorVologases IVSuccessorVologases VDynastyArsacid dynastyReligionZoroastrianism Osroes II (also spelled Chosroes II or Khosrow II; Parthian: 𐭇𐭅𐭎𐭓𐭅 Husrōw), was a claimant of the throne of the Parthian Empire c. 190.[1] He is unknown to history except for the coins he issued.[1] The date of his reign suggests that he rebelled against Vologases IV but w...

NATO operation in the Horn of Africa Operation Ocean ShieldPart of Operation Enduring Freedom – Horn of AfricaUSS Farragut destroying a pirate skiff in the Gulf of Aden (March 2010)Date17 August 2009 – 24 November 2016LocationIndian Ocean, Gulf of Aden, Guardafui Channel, Arabian Sea, Red SeaResult Coalition victory Number of Somali pirate attacks reduced dramaticallyBelligerents  NATO  Denmark  United Kingdom  United States  France  Netherlands  Sp...

 

 

Group of people involved in some phase of the making of a film For the comedic team, see The Film Crew. For the 2020 viral video, see The Film Crew (video). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Film crew – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove th...

 

 

This article is about the district. For its eponymous headquarters, see Chitradurga. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Chitradurga district – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this message) District of Karnataka in IndiaChitradurga districtDi...

Wickes-class destroyer For other ships with the same name, see USS Foote. History United States NameFoote NamesakeAndrew Hull Foote BuilderFore River Shipbuilding Company, Quincy, Massachusetts Laid down7 August 1918 Launched14 December 1918 Commissioned21 March 1919 Decommissioned6 July 1922 Recommissioned2 July 1940 Decommissioned23 September 1940 Stricken8 January 1941 FateTransferred to United Kingdom, 23 September 1940 United Kingdom NameHMS Roxborough Commissioned23 September ...

 

 

No confundir con la Asociación Estadounidense de Psiquiatría. Asociación Americana de PsicologíaTipo colegio profesional, editorial, editor de acceso abierto, school accreditor y asociación profesionalCampo psicologíaFundación 1892Fundador Stanley HallSede central  Estados Unidos750 First Street NE, Washington D. C. 20002-4242 Oficina CentralMiembro de ORCID, Consortium of Social Science Associations, American Council on Education, Comité de Ética en Publicación, Asso...

 

 

36-bit mainframe computer (1964–1966) PDP-6Gordon Bell and Alan Kotok using a PDP-6 in 1964DeveloperDigital Equipment CorporationProduct familyProgrammed Data ProcessorTypeMainframe computerRelease date1964; 60 years ago (1964)Operating systemearly version of what later became TOPS-10, custom versions of the system, ITS, WAITSPlatformDEC 36-bitMass1,300 pounds (590 kg), 1,700 pounds (770 kg) with Fast MemorySuccessorPDP-10 The PDP-6, short for Programmed Data Pro...

王春宁2023年的王春宁 中国人民武装警察部队第九任司令员任期2020年12月起 个人资料性别男出生1963年3月江苏南京国籍 中华人民共和国政党 中国共产党军种 中国人民武装警察部队军衔上將亲属父:王永明 学历 中国人民解放军国防大学在职研究生 俄罗斯总参谋部军事学院 军衔记录 2011年晋升少将军衔 2017年7月晋升中将军衔 2020年4月改为武警中将警衔 2020年12月晋升武�...

 

 

Local Government Area in Rivers State, NigeriaEtcheLocal Government AreaA river in a village at Etche Rivers StateEtcheEtche shown within NigeriaCoordinates: 4°59′N 7°03′E / 4.99°N 7.05°E / 4.99; 7.05Country NigeriaStateRivers StateGovernment • Local Government ChairmanObinna Anyanwu (PDP) • Deputy Local Government ChairmanGladys Onyekachi Nweke (PDP) • Local Government CouncilWard 1: Daniel Amadi (PDP)Ward 2: Cynthia N...

 

 

SenatParlemen ke-12JenisJenisMajelis tinggi Parlemen Kenya SejarahDidirikan1963 dan 2013Sesi baru dimulai31 Agustus 2017 (2017-08-31)PimpinanKetua parlemenKen Lusaka, Jubilee sejak 31 Agustus 2017 [1] Wakil ketuaKithure Kindiki, Jubilee sejak 31 Agustus 2017 Pemimpin mayoritasKipchumba Murkomen, Jubilee sejak 31 Agustus 2017[2] Pemimpin MinoritasJames Orengo, NASA sejak 20 Maret 2018 Majority WhipSusan Kihika, Jubilee sejak 31 Agustus 2017[2] K...

NurlailaStiker label singel NurlailaSingel oleh Bing SlametSisi-BBelaian SayangGenre Cha-cha-chá musik latin Durasi2:56LabelGembira RN. 019PenciptaAsbon MadjidBing Slamet Artikel ini bukan mengenai Nurleila, album dan lagu karya grup vokal Rumpies. Nurlaila (atau Nurlela) adalah sebuah lagu yang diciptakan oleh Asbon Madjid serta Bing Slamet dan dinyanyikan oleh penyanyi Bing Slamet diiringi Orkes Mambetarumpadjo. Lagu ini muncul dalam film Bing Slamet Tukang Betjak pada tahun 1959.[1 ...

 

 

Mount Rushmore National Monument. Sculptures of George Washington, Thomas Jefferson, Theodore Roosevelt, and Abraham Lincoln represent the first 150 years of American history This article is part of a series on theCulture of the United States Society History Language People race and ethnicity Religion Arts and literature Architecture Art Dance Fashion Literature comics poetry Music Sculpture Theater Other Cuisine Festivals Folklore Media newspapers radio cinema TV Internet Americana Mythology...

 

 

Argentine naval officer (1795–1885) José María PinedoPinedo c. 1880Born(1795-06-21)21 June 1795Buenos Aires, Viceroyalty of the Río de la PlataDied19 February 1885(1885-02-19) (aged 89)Buenos Aires, ArgentinaBuriedBuenos Aires, ArgentinaAllegianceArgentine ConfederationService/branchArgentine NavyRankColonelBattles/warsArgentine War of IndependenceArgentine Civil WarsCisplatine WarRe-establishment of British rule on the Falklands (1833)Spouse(s)Wilhelmina y Igarzábal Dolores ...

Éphémérides Chronologie du Canada 1864 1865 1866  1867  1868 1869 1870Décennies au Canada :1830 1840 1850  1860  1870 1880 1890 Chronologie dans le monde 1864 1865 1866  1867  1868 1869 1870Décennies :1830 1840 1850  1860  1870 1880 1890Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, ...

 

 

إبنشيد    شعار الاسم الرسمي (بالألمانية: Ippenschied)‏    الإحداثيات 49°52′05″N 7°37′57″E / 49.868055555556°N 7.6325°E / 49.868055555556; 7.6325   [1] تقسيم إداري  البلد ألمانيا[2]  التقسيم الأعلى منطقة باد كرويتسناخ  خصائص جغرافية  المساحة 2.62 كيلومتر مربع (31 ديسمب�...