Pulsar timing array

A pulsar timing array (PTA) is a set of galactic pulsars that is monitored and analyzed to search for correlated signatures in the pulse arrival times on Earth. As such, they are galactic-sized detectors. Although there are many applications for pulsar timing arrays, the best known is the use of an array of millisecond pulsars to detect and analyse long-wavelength (i.e., low-frequency) gravitational wave background. Such a detection would entail a detailed measurement of a gravitational wave (GW) signature, like the GW-induced quadrupolar correlation[1] between arrival times of pulses emitted by different millisecond pulsar pairings that depends only on the pairings' angular separations in the sky. Larger arrays may be better for GW detection because the quadrupolar spatial correlations induced by GWs can be better sampled by many more pulsar pairings. With such a GW detection, millisecond pulsar timing arrays would open a new low-frequency window in gravitational-wave astronomy to peer into potential ancient astrophysical sources and early Universe processes, inaccessible by any other means.[2][3]

Overview

The pulsars P1 ... Pn are sending signals periodically, which are received on Earth. A gravitational wave (GW) perturbs spacetime in between the pulsar and Earth (E) and changes the time of arrival of the pulses. By measuring the spatial correlation of the changes in the pulse parameters of many different pulsar pairings, a GW can be detected.

The proposal to use pulsars as gravitational wave (GW) detectors was originally made by Mikhail Sazhin[4] and Steven Detweiler[5] in the late 1970s. The idea is to treat the solar system barycenter and a galactic pulsar as opposite ends of an imaginary arm in space. The pulsar acts as the reference clock at one end of the arm sending out regular signals which are monitored by an observer on Earth. The effect of a passing long-wavelength GW would be to perturb the galactic spacetime and cause a small change in the observed time of arrival of the pulses.[6]: 207–209 

In 1983, Hellings and Downs[7] extended this idea to an array of pulsars and found that a stochastic background of GWs would produce a distinctive GW signature: a quadrupolar and higher multipolar spatial correlation between arrival times of pulses emitted by different millisecond pulsar pairings that depends only on the pairing's angular separation in the sky as viewed from Earth (more precisely the solar system barycenter).[8] The key property of a pulsar timing array is that the signal from a stochastic GW background will be correlated across the sightlines of pulsar pairs, while that from the other noise processes will not.[9] In the literature, this spatial correlation curve is called the Hellings-Downs curve or the overlap reduction function.[10]

The Hellings and Downs work was limited in sensitivity by the precision and stability of the pulsar clocks in the array. Following the discovery of the more stable millisecond pulsar in 1982, Foster and Backer[11] improved the sensitivity to GWs by applying in 1990 the Hellings-Downs analysis to an array of highly stable millisecond pulsars and initiated a ‘pulsar timing array program’ to observe three pulsars using the National Radio Astronomy Observatory 43 m telescope.

Millisecond pulsars are used because they are not prone to the starquakes and glitches,[12] accretion events or stochastic timing noise[13] which can affect the period of classical pulsars. Millisecond pulsars have a stability comparable to atomic-clock-based time standards when averaged over decades.[14]

One influence on these propagation properties are low-frequency GWs, with a frequency of 10−9 to 10−6 hertz; the most likely astrophysical sources of such GWs are supermassive black hole binaries in the centres of merging galaxies, where tens of millions of solar masses are in orbit with a period between months and a few years.

GWs cause the time of arrival of the pulses to vary by a few tens of nanoseconds over their wavelength (so, for a frequency of 3 x 10−8 Hz, one cycle per year, one would find that pulses arrive 20 ns early in July and 20 ns late in January). This is a delicate experiment, although millisecond pulsars are stable enough clocks that the time of arrival of the pulses can be predicted to the required accuracy; the experiments use collections of 20 to 50 pulsars to account for dispersion effects in the atmosphere and in the space between the observer and the pulsar. It is necessary to monitor each pulsar roughly once a week; a higher cadence of observation would allow the detection of higher-frequency GWs, but it is unclear whether there would be loud enough astrophysical sources at such frequencies.

It is not possible to get accurate sky locations for the sources by this method, as analysing timings for twenty pulsars would produce a region of uncertainty of 100 square degrees – a patch of sky about the size of the constellation Scutum which would contain at least thousands of merging galaxies.

The main goal of PTAs is measuring the amplitude of background GWs, possibly caused by a history of supermassive black hole mergers. The amplitudes can describe the history of how galaxies were formed. The bound on the amplitude of the background waves is called an upper limit. The amplitude of the GW background is less than the upper limit.

Some supermassive black hole binaries may form a stable binary and only merge after many times the current age of the universe. This is called the final parsec problem. It is unclear how supermassive black holes approach each other at this distance.

While supermassive black hole binaries are the most likely source of very low frequency GWs, other sources could generate the waves, such as cosmic strings, which may have formed early in the history of the universe. When cosmic strings interact, they can form loops that decay by radiating GWs.[15][16]

Active and proposed PTAs

Globally there are five active pulsar timing array projects. The first three projects (PPTA, EPTA, and NANOGrav) have begun collaborating under the title of the International Pulsar Timing Array project, InPTA became a member in 2021. Recently China has also become active although not a full member of IPTA yet.

  1. The Parkes Pulsar Timing Array (PPTA) at the Parkes radio-telescope has been collecting data since 2005.
  2. The European Pulsar Timing Array (EPTA) has been collecting data since 2009; it uses the five largest radio telescopes in Europe:
  3. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) uses data, collected since 2005, from the Arecibo and Green Bank radio telescopes.
  4. The Indian Pulsar Timing Array (InPTA) uses the upgraded Giant Metrewave Radio Telescope.[17][18]
  5. The Chinese Pulsar Timing Array (CPTA) uses the Five-hundred-meter Aperture Spherical radio Telescope (FAST).[19]
  6. The MeerKAT Pulsar Timing Array (MPTA), part of MeerTime, a MeerKAT Large Survey Project. The MPTA aims to precisely measure pulse arrival times from an ensemble of 88 pulsars visible from the Southern hemisphere, with the goal of contributing to the search, detection, and study of nanohertz-frequency gravitational waves as part of the International Pulsar Timing Array.

Observations

Plot of correlation between pulsars observed by NANOGrav (2023) vs angular separation between pulsars, compared with a theoretical model (dashed purple, or Hellings-Downs curve) and if there were no gravitational wave background (solid green)[20][21]

In 2020, the NANOGrav collaboration presented the 12.5-year data release, which included strong evidence for a power-law stochastic process with common strain amplitude and spectral index across all pulsars, but statistically inconclusive data for the critical Hellings-Downs quadrupolar spatial correlation.[22][23]

In June 2023, NANOGrav, EPTA, PPTA, and InPTA announced that they found evidence for a gravitational wave background. NANOGrav's 15-year data on 68 pulsars provided a first measurement of the distinctive Hellings-Downs curve, a tell-tale quadrupolar signature of gravitational waves.[24] Similar results were published by European Pulsar Timing Array, who claimed a -significance, the standard for evidence. They expect that a -significance, the standard for detection, would be achieved around 2025 by combining the measurements of several collaborations.[25][26] Also in June 2023, the Chinese Pulsar Timing Array (CPTA) reported similar findings with a -significance; they monitored 57 millisecond pulsars over just 41 months, taking advantage of the high sensitivity of FAST, the world's largest radio telescope.[27][28] Four independent collaborations reporting similar results provided cross validation of the evidence for GWB using different telescopes, different arrays of pulsars, and different analysis methods.[29] The sources of the gravitational-wave background can not be identified without further observations and analyses, although binaries of supermassive black holes are leading candidates.[3]

See also

References

  1. ^ Xu, Heng; Chen, Siyuan; Guo, Yanjun; Jiang, Jinchen; Wang, Bojun; Xu, Jiangwei; Xue, Zihan; Nicolas Caballero, R.; Yuan, Jianping; Xu, Yonghua; Wang, Jingbo; Hao, Longfei; Luo, Jingtao; Lee, Kejia; Han, Jinlin; Jiang, Peng; Shen, Zhiqiang; Wang, Min; Wang, Na; Xu, Renxin; Wu, Xiangping; Manchester, Richard; Qian, Lei; Guan, Xin; Huang, Menglin; Sun, Chun; Zhu, Yan (2023-06-29). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics. 23 (7). IOP Publishing: 075024. arXiv:2306.16216. doi:10.1088/1674-4527/acdfa5. ISSN 1674-4527.
  2. ^ Lommen, Andrea N (13 November 2015). "Pulsar timing arrays: the promise of gravitational wave detection". Reports on Progress in Physics. 78 (12): 124901. Bibcode:2015RPPh...78l4901L. doi:10.1088/0034-4885/78/12/124901. PMID 26564968. S2CID 42813343.
  3. ^ a b O'Callaghan, Jonathan (4 August 2023). "A Background 'Hum' Pervades the Universe. Scientists Are Racing to Find Its Source - Astronomers are now seeking to pinpoint the origins of an exciting new form of gravitational waves that was announced earlier this year". Scientific American. Archived from the original on 4 August 2023. Retrieved 5 August 2023. Astronomers are now seeking to pinpoint the origins of an exciting new form of gravitational waves that was announced earlier this year.
  4. ^ Sazhin, M.V. (1978). "Opportunities for detecting ultralong gravitational waves". Sov. Astron. 22: 36–38. Bibcode:1978SvA....22...36S.
  5. ^ Detweiler, S.L. (1979). "Pulsar timing measurements and the search for gravitational waves". Astrophysical Journal. 234: 1100–1104. Bibcode:1979ApJ...234.1100D. doi:10.1086/157593.
  6. ^ Moskvitch, Katia (2020). Neutron Stars The Quest to Understand the Zombies of the Cosmos. Cambridge, MA: Harvard University Press. ISBN 9780674919358.
  7. ^ Hellings, R.W.; Downs, G.S. (1983). "Upper limits on the isotropic gravitational radiation background from pulsar timing analysis". Astrophysical Journal Letters. 265: L39 – L42. Bibcode:1983ApJ...265L..39H. doi:10.1086/183954.
  8. ^ Romano, Joseph D.; Allen, Bruce (January 30, 2024). "Answers to frequently asked questions about the pulsar timing array Hellings and Downs curve". arXiv:2308.05847v2 [gr-qc].
  9. ^ Jenet, Fredrick A.; Romano, Joseph D. (July 1, 2015). "Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves". American Journal of Physics. 83 (7): 635–645. arXiv:1412.1142. Bibcode:2015AmJPh..83..635J. doi:10.1119/1.4916358. S2CID 116950137.
  10. ^ Taylor, Stephen R. (2022). Nanohertz Gravitational Wave Astronomy (First ed.). Taylor & Francis Group: CRC Press. ISBN 9781003240648.
  11. ^ Foster, R.S.; Backer, D.C. (1990). "Constructing a pulsar timing array". Astrophysical Journal. 361: 300–308. Bibcode:1990ApJ...361..300F. doi:10.1086/169195.
  12. ^ Antonelli, Marco; Montoli, Alessandro; Pizzochero, Pierre (November 2022), "Insights into the Physics of Neutron Star Interiors from Pulsar Glitches", Astrophysics in the XXI Century with Compact Stars, pp. 219–281, arXiv:2301.12769, doi:10.1142/9789811220944_0007, ISBN 978-981-12-2093-7, S2CID 256390487
  13. ^ Antonelli, Marco; Basu, Avishek; Haskell, Brynmor (2023-02-07). "Stochastic processes for pulsar timing noise: fluctuations in the internal and external torques". Monthly Notices of the Royal Astronomical Society. 520 (2): 2813–2828. arXiv:2206.10416. doi:10.1093/mnras/stad256. ISSN 0035-8711.
  14. ^ Hartnett, John G.; Luiten, Andre N. (2011-01-07). "Colloquium: Comparison of astrophysical and terrestrial frequency standards". Reviews of Modern Physics. 83 (1): 1–9. arXiv:1004.0115. Bibcode:2011RvMP...83....1H. doi:10.1103/revmodphys.83.1. ISSN 0034-6861. S2CID 118396798.
  15. ^ Mingarelli, Chiara. "Searching for the Gravitational Waves LIGO Can't Hear". Scientific American Blog Network. Retrieved 2016-02-25.
  16. ^ The NANOGrav Collaboration (2016-02-19). "Interpreting the Recent Upper Limit on the Gravitational Wave Background from the Parkes Pulsar Timing Array". arXiv:1602.06301 [astro-ph.IM].
  17. ^ Joshi, Bhal Chandra; Gopakumar, Achamveedu; Pandian, Arul; Prabu, Thiagaraj; Dey, Lankeswar; Bagchi, Manjari; Desai, Shantanu; Tarafdar, Pratik; Rana, Prerna; Maan, Yogesh; BATRA, Neelam Dhanda; Girgaonkar, Raghav; Agarwal, Nikita; Arumugam, Paramasivan; Basu, Avishek (2022-12-08). "Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective". Journal of Astrophysics and Astronomy. 43 (2): 98. arXiv:2207.06461. Bibcode:2022JApA...43...98J. doi:10.1007/s12036-022-09869-w. ISSN 0973-7758. S2CID 250526806.
  18. ^ Tarafdar, Pratik; Nobleson, K.; Rana, Prerna; Singha, Jaikhomba; Krishnakumar, M. A.; Joshi, Bhal Chandra; Paladi, Avinash Kumar; Kolhe, Neel; Batra, Neelam Dhanda; Agarwal, Nikita; Bathula, Adarsh; Dandapat, Subhajit; Desai, Shantanu; Dey, Lankeswar; Hisano, Shinnosuke (January 2022). "The Indian Pulsar Timing Array: First data release". Publications of the Astronomical Society of Australia. 39: e053. arXiv:2206.09289. Bibcode:2022PASA...39...53T. doi:10.1017/pasa.2022.46. ISSN 1323-3580. S2CID 249889663.
  19. ^ Zhao, Wen; Zhang, Yang; You, Xiao-Peng; Zhu, Zong-Hong (2013-06-13). "Constraints of relic gravitational waves by pulsar timing arrays: Forecasts for the FAST and SKA projects". Physical Review D. 87 (12): 124012. arXiv:1303.6718. Bibcode:2013PhRvD..87l4012Z. doi:10.1103/physrevd.87.124012. ISSN 1550-7998. S2CID 55090406.
  20. ^ "IOPscience - Focus on NANOGrav's 15 yr Data Set and the Gravitational Wave Background".
  21. ^ "After 15 years, pulsar timing yields evidence of cosmic gravitational wave background". 29 June 2023.
  22. ^ Arzoumanian, Zaven; Baker, Paul T.; Blumer, Harsha; Bécsy, Bence; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Chatterjee, Shami; Chen, Siyuan; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Cromartie, H. Thankful; Decesar, Megan E.; Demorest, Paul B. (2020-12-01). "The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background". The Astrophysical Journal. 905 (2): L34. arXiv:2009.04496. Bibcode:2020ApJ...905L..34A. doi:10.3847/2041-8213/abd401. ISSN 0004-637X. S2CID 221586395.
  23. ^ O'Neill, Ian; Cofield, Calla (11 January 2021). "Gravitational Wave Search Finds Tantalizing New Clue". NASA. Retrieved 11 January 2021.
  24. ^ "15 Years of Radio Data Reveals Evidence of Spacetime Murmur". NASA Jet Propulsion Laboratory. Retrieved 2023-06-30.
  25. ^ The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals
  26. ^ "Ein neuer Zugang zum Universum".
  27. ^ Xin, Ling (29 June 2023). "Chinese team finds key evidence for low-frequency gravitational waves with FAST telescope". scmp.com. South China Morning Post. Retrieved 1 July 2023.
  28. ^ "Probing the Universe's Secrets: Key Evidence for NanoHertz Gravitational Waves". scitechdaily.com. Chinese Academy of Sciences. 2 July 2023. Retrieved 21 July 2023. Chinese scientists has recently found key evidence for the existence of nanohertz gravitational waves, marking a new era in nanoHertz gravitational research.
  29. ^ Rini, Matteo (June 2023). "Researchers Capture Gravitational-Wave Background with Pulsar "Antennae"". Physics. 16: 118. Bibcode:2023PhyOJ..16..118R. doi:10.1103/Physics.16.118. S2CID 260750773. Retrieved 1 July 2023. Four independent collaborations have spotted a background of gravitational waves that passes through our Galaxy, opening a new window on the astrophysical and cosmological processes that could produce such waves.

Read other articles:

Angkatan Bersenjata ChiliFuerzas Armadas de ChileBendera Kementerian Pertahanan Nasional ChiliDidirikan1810Angkatan Angkatan Darat Chili Angkatan Laut Chili Angkatan Udara ChiliMarkas besarSantiago de ChileKepemimpinanPanglima TertinggiGabriel BoricKekuatan personelUsia penerimaan18 tahunKetersediaanmenurut usiaPria usia 15-49: 3.815.761 (est. 2005), umur 15–49Ketersediaan untuk tugas militerPria usia 15-49: 3.123.281 (est. 2005), umur 15–49Penambahanusia militer/...

 

Sebuah jaring-jaring makanan air tawar dan terestrial Jaring-jaring makanan adalah hubungan yang kompleks dari rantai-rantai makanan dalam sebuah komunitas ekologis, yang menunjukkan hubungan siapa yang mengonsumsi siapa. Nama lain untuk jaring-jaring makanan adalah sistem konsumen-sumber daya. Para ahli ekologi menggolongkan semua bentuk kehidupan dalam dua kelompok utama berdasarkan tingkat trofik mereka, yang menunjukkan posisinya dalam jaring-jaring makanan yaitu autotrof dan heterotrof. ...

 

Apurvi ChandelaApurvi Chandela dalam Pesta Olahraga Asia Selatan ke-12 pada tahun 2016Informasi pribadiKewarganegaraanIndiaLahir4 Januari 1993 (umur 31)Jaipur, Rajasthan, IndiaTinggi154 m (505 ft 3 in)Berat52 kg (115 pon) OlahragaNegara IndiaOlahragaTembakLombaSenapan udara 10 meter Rekam medali Tembak putri Mewakili  India Final Piala Dunia 2019 Putian Senapan udara 10 meter tim campuran 2015 Munich Senapan udara 10 meter Piala Dunia 2019 Munich Senapa...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Neohylus dubius Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Neohylus Spesies: Neohylus dubius Neohylus dubius adalah spesies kumbang tanduk panjang yang tergolong famili Cerambyci...

 

إحكام الدلالة على تحرير الرسالة إحكام الدلالة على تحرير الرسالة  معلومات الكتاب المؤلف زكريا الأنصاري  اللغة العربية  الموضوع التزكية والتصوف مأخوذ عن الرسالة القشيرية مؤلفات أخرى تحفة الطلاب • منهج الطلاب (كتاب) • الإعلام والاهتمام بجمع فتاوى شيخ الإسلام تعديل ...

 

Chronologie de la France ◄◄ 1622 1623 1624 1625 1626 1627 1628 1629 1630 ►► Chronologies 5 août : Gaston d’Orléans épouse Marie de MontpensierDonnées clés 1623 1624 1625  1626  1627 1628 1629Décennies :1590 1600 1610  1620  1630 1640 1650Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littéra...

الدوري الفرنسي 1955–56 تفاصيل الموسم الدوري الفرنسي  النسخة 18  البلد فرنسا  التاريخ بداية:21 أغسطس 1955  نهاية:3 يونيو 1956  المنظم اتحاد فرنسا لكرة القدم  البطل نادي نيس  الهابطون نادي ليل،  وجيروندان بوردو،  ونادي تروا،  واتحاد تروا وسافينيان الرياضي ...

 

FDJ 2017GénéralitésÉquipe Groupama-FDJCode UCI FDJStatut UCI WorldTeamPays  FranceSport Cyclisme sur routeEffectif 32 (dont 3 stagiaires)Manager général Marc MadiotDirecteurs sportifs Yvon Madiot, Thierry Bricaud, Martial Gayant, Frédéric Guesdon, David Han, Sébastien Joly, Franck Pineau, Julien Pinot, Jussi VeikkanenPalmarèsNombre de victoires 27FDJ 2016Groupama-FDJ 2018modifier - modifier le code - modifier Wikidata La saison 2017 de l'équipe cycliste FDJ est la vingtième-e...

 

The following is a list of characters from the Procter & Gamble daytime soap opera The Edge of Night, which ran from 1956 to 1984.[1][2] John Larkin originated the role of Mike Karr, portraying the character from 1956 to 1961. Laurence Hugo (left) portrayed Mike Karr from 1962 to 1971 (with Barry Newman as John Barnes, right). Ann Flood portrayed Nancy Pollock Karr. Donald May portrayed Adam Drake. Millette Alexander played three different roles during the run of the seri...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) تيودور فاسيلي   معلومات شخصية الميلاد 16 أغسطس 1947 (77 سنة)  بلويشت  الطول 173 سنتيمتر[1]  الجنسية رومانيا  الوزن 66 كيلوغرام[1]  الحياة العملي...

 

Dutch politician Gaspar FagelPortrait by Johannes VollevensGrand Pensionary of HollandIn office20 August 1672 – 5 December 1688 (1672-08-20 – 1688-12-05)Preceded byJohan de WittSucceeded byMichiel ten Hove Personal detailsBorn(1634-01-25)25 January 1634The Hague, Dutch RepublicDied15 December 1688(1688-12-15) (aged 54)The Hague, Dutch RepublicResting placeGrote Kerk, The Hague Gaspar Fagel (25 January 1634 – 15 December 1688) was a Dutch poli...

 

Cet article est une ébauche concernant la politique et le Danemark. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Gouvernement du DanemarkCadrePays  DanemarkOrganisationSite web (da) www.regeringen.dkmodifier - modifier le code - modifier WikidataLe gouvernement du Danemark représente le pouvoir exécutif du royaume du Danemark depuis 1848. Le gouvernement est dirigé par le Premier ministre (en da...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2016. PBF Energy Inc.JenisPublik (NYSE: PBF)IndustriEnergiKantorpusatAkron, Ohio, Amerika SerikatWilayah operasiAmerika SerikatTokohkunciRichard J. Kramer(CEO)Pendapatan$19.540 jutaTotal aset$17.527 jutaSitus webwww,pbfenergy.com PBF Energy Inc. (NYSE: PBF) ad...

 

Kantor Perserikatan Bangsa-Bangsa di NairobiUNONLokasi di KenyaSingkatanUNONLokasiNairobi, KenyaKoordinat1°14′05″S 36°48′59″E / 1.2346°S 36.8164°E / -1.2346; 36.8164Koordinat: 1°14′05″S 36°48′59″E / 1.2346°S 36.8164°E / -1.2346; 36.8164Direktur-JenderalZainab BanguraSitus webwww.unon.org Kantor Perserikatan Bangsa-Bangsa di Nairobi (bahasa Inggris: United Nations Office at Nairobi; UNON) di Nairobi, ibukota Kenya, ada...

قرية جزيرة ذو حراب  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية ميدي العزلة عزلة الجزر السكان التعداد السكاني 2004 السكان 90   • الذكور 90   • الإناث 0   • عدد الأسر 16   • عدد المساكن 16 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش) ت...

 

Panasonic Gobel Awards 2017Poster Panasonic Gobel Awards 2017DisponsoriPanasonicTanggalJumat, 27 Oktober 2017LokasiCendrawasih Room, Jakarta Convention Center, Jalan Jenderal Gatot Subroto, Senayan, Gelora, Tanah Abang, Jakarta PusatNegara IndonesiaDipersembahkan oleh Andhika Pratama Ayu Dewi Hesti Purwadinata Pembawa pra-acara Indra Herlambang Robby Purba Sere Kalina PenampilanGigiIkhtisarPenghargaan terbanyakRCTI (9)Drama seriDunia TerbalikAktorAgus KuncoroAktrisPrilly LatuconsinaSitus...

 

Part of a series on theHistory of Japan ListPaleolithicbefore 14,000 BCJōmon14,000 – 1000 BCYayoi 1000 BC – 300 ADKofun 300 AD – 538 ADAsuka 538 – 710Nara 710 – 794HeianFormer Nine Years' WarLater Three-Year WarGenpei War 794–1185KamakuraJōkyū WarMongol invasionsGenkō WarKenmu Restoration 1185–1333MuromachiNanboku-chō periodSengoku period 1336–1573Azuchi–Momoyama Nanban tradeImjin WarBattle of Sekigahara 1573–1603Edo (Tokugawa) Tok...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Unione Sportiva Dilettantistica Atletico Catania. Società Sportiva Atletico CataniaStagione 1987-1988Sport calcio Squadra Atletico Catania Allenatore Mario Zurlini poi Lino De Petrillo Presidente Salvatore Tabita Serie C210º posto nel girone D. Maggiori presenz...

 

Linked hypertext system on the Internet This article is about the global system of pages accessed via HTTP. For the worldwide computer network, see Internet. For the web browser, see WorldWideWeb. WWW and The Web redirect here. For other uses, see WWW (disambiguation) and The Web (disambiguation). World Wide WebThe historic World Wide Web logo, designed by Robert Cailliau. Currently, there is no widely accepted logo in use for the WWW.AbbreviationWWWYear started1989; 35 years ago...