Embedding

In mathematics, an embedding (or imbedding[1]) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.

When some object is said to be embedded in another object , the embedding is given by some injective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which and are instances. In the terminology of category theory, a structure-preserving map is called a morphism.

The fact that a map is an embedding is often indicated by the use of a "hooked arrow" (U+21AA RIGHTWARDS ARROW WITH HOOK);[2] thus: (On the other hand, this notation is sometimes reserved for inclusion maps.)

Given and , several different embeddings of in may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational numbers in the real numbers, and the real numbers in the complex numbers. In such cases it is common to identify the domain with its image contained in , so that .

Topology and geometry

General topology

In general topology, an embedding is a homeomorphism onto its image.[3] More explicitly, an injective continuous map between topological spaces and is a topological embedding if yields a homeomorphism between and (where carries the subspace topology inherited from ). Intuitively then, the embedding lets us treat as a subspace of . Every embedding is injective and continuous. Every map that is injective, continuous and either open or closed is an embedding; however there are also embeddings that are neither open nor closed. The latter happens if the image is neither an open set nor a closed set in .

For a given space , the existence of an embedding is a topological invariant of . This allows two spaces to be distinguished if one is able to be embedded in a space while the other is not.

If the domain of a function is a topological space then the function is said to be locally injective at a point if there exists some neighborhood of this point such that the restriction is injective. It is called locally injective if it is locally injective around every point of its domain. Similarly, a local (topological, resp. smooth) embedding is a function for which every point in its domain has some neighborhood to which its restriction is a (topological, resp. smooth) embedding.

Every injective function is locally injective but not conversely. Local diffeomorphisms, local homeomorphisms, and smooth immersions are all locally injective functions that are not necessarily injective. The inverse function theorem gives a sufficient condition for a continuously differentiable function to be (among other things) locally injective. Every fiber of a locally injective function is necessarily a discrete subspace of its domain

Differential topology

In differential topology: Let and be smooth manifolds and be a smooth map. Then is called an immersion if its derivative is everywhere injective. An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image).[4]

In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold. An immersion is precisely a local embedding, i.e. for any point there is a neighborhood such that is an embedding.

When the domain manifold is compact, the notion of a smooth embedding is equivalent to that of an injective immersion.

An important case is . The interest here is in how large must be for an embedding, in terms of the dimension of . The Whitney embedding theorem[5] states that is enough, and is the best possible linear bound. For example, the real projective space of dimension , where is a power of two, requires for an embedding. However, this does not apply to immersions; for instance, can be immersed in as is explicitly shown by Boy's surface—which has self-intersections. The Roman surface fails to be an immersion as it contains cross-caps.

An embedding is proper if it behaves well with respect to boundaries: one requires the map to be such that

  • , and
  • is transverse to in any point of .

The first condition is equivalent to having and . The second condition, roughly speaking, says that is not tangent to the boundary of .

Riemannian and pseudo-Riemannian geometry

In Riemannian geometry and pseudo-Riemannian geometry: Let and be Riemannian manifolds or more generally pseudo-Riemannian manifolds. An isometric embedding is a smooth embedding that preserves the (pseudo-)metric in the sense that is equal to the pullback of by , i.e. . Explicitly, for any two tangent vectors we have

Analogously, isometric immersion is an immersion between (pseudo)-Riemannian manifolds that preserves the (pseudo)-Riemannian metrics.

Equivalently, in Riemannian geometry, an isometric embedding (immersion) is a smooth embedding (immersion) that preserves length of curves (cf. Nash embedding theorem).[6]

Algebra

In general, for an algebraic category , an embedding between two -algebraic structures and is a -morphism that is injective.

Field theory

In field theory, an embedding of a field in a field is a ring homomorphism .

The kernel of is an ideal of , which cannot be the whole field , because of the condition . Furthermore, any field has as ideals only the zero ideal and the whole field itself (because if there is any non-zero field element in an ideal, it is invertible, showing the ideal is the whole field). Therefore, the kernel is , so any embedding of fields is a monomorphism. Hence, is isomorphic to the subfield of . This justifies the name embedding for an arbitrary homomorphism of fields.

Universal algebra and model theory

If is a signature and are -structures (also called -algebras in universal algebra or models in model theory), then a map is a -embedding exactly if all of the following hold:

  • is injective,
  • for every -ary function symbol and we have ,
  • for every -ary relation symbol and we have iff

Here is a model theoretical notation equivalent to . In model theory there is also a stronger notion of elementary embedding.

Order theory and domain theory

In order theory, an embedding of partially ordered sets is a function between partially ordered sets and such that

Injectivity of follows quickly from this definition. In domain theory, an additional requirement is that

is directed.

Metric spaces

A mapping of metric spaces is called an embedding (with distortion ) if

for every and some constant .

Normed spaces

An important special case is that of normed spaces; in this case it is natural to consider linear embeddings.

One of the basic questions that can be asked about a finite-dimensional normed space is, what is the maximal dimension such that the Hilbert space can be linearly embedded into with constant distortion?

The answer is given by Dvoretzky's theorem.

Category theory

In category theory, there is no satisfactory and generally accepted definition of embeddings that is applicable in all categories. One would expect that all isomorphisms and all compositions of embeddings are embeddings, and that all embeddings are monomorphisms. Other typical requirements are: any extremal monomorphism is an embedding and embeddings are stable under pullbacks.

Ideally the class of all embedded subobjects of a given object, up to isomorphism, should also be small, and thus an ordered set. In this case, the category is said to be well powered with respect to the class of embeddings. This allows defining new local structures in the category (such as a closure operator).

In a concrete category, an embedding is a morphism that is an injective function from the underlying set of to the underlying set of and is also an initial morphism in the following sense: If is a function from the underlying set of an object to the underlying set of , and if its composition with is a morphism , then itself is a morphism.

A factorization system for a category also gives rise to a notion of embedding. If is a factorization system, then the morphisms in may be regarded as the embeddings, especially when the category is well powered with respect to . Concrete theories often have a factorization system in which consists of the embeddings in the previous sense. This is the case of the majority of the examples given in this article.

As usual in category theory, there is a dual concept, known as quotient. All the preceding properties can be dualized.

An embedding can also refer to an embedding functor.

See also

Notes

  1. ^ Spivak 1999, p. 49 suggests that "the English" (i.e. the British) use "embedding" instead of "imbedding".
  2. ^ "Arrows – Unicode" (PDF). Retrieved 2017-02-07.
  3. ^ Hocking & Young 1988, p. 73. Sharpe 1997, p. 16.
  4. ^ Bishop & Crittenden 1964, p. 21. Bishop & Goldberg 1968, p. 40. Crampin & Pirani 1994, p. 243. do Carmo 1994, p. 11. Flanders 1989, p. 53. Gallot, Hulin & Lafontaine 2004, p. 12. Kobayashi & Nomizu 1963, p. 9. Kosinski 2007, p. 27. Lang 1999, p. 27. Lee 1997, p. 15. Spivak 1999, p. 49. Warner 1983, p. 22.
  5. ^ Whitney H., Differentiable manifolds, Ann. of Math. (2), 37 (1936), pp. 645–680
  6. ^ Nash J., The embedding problem for Riemannian manifolds, Ann. of Math. (2), 63 (1956), 20–63.

References

Read other articles:

Bagian sebuah scan dari dokumen bersejarah: Judul: Schedelsche Weltchronik atau Kronik Nuremberg Hedwig dari Nordgau (skt. 922 – set. 993) merupakan istri Siegfried dari Luksemburg, Comte dan pendiri negara Luksemburg. Mereka menikah pada sekitar tahun 950.[1] Ia berasal dari Sachsen dan asal usul orangtuanya tidak diketahui secara pasti. Beberapa sumber menyatakan ia adalah putri Comte Eberhard IV dari Nordgau dan Luitgard dari Lotharingia.[2] Yang lainnya menyatakan bahwa ...

 

 

Lambang Provinsi Sumatera Barat Peta lokasi Provinsi Sumatera Barat di Indonesia Peta Kabupaten di Sumatera Barat Artikel utama: Daftar kabupaten di Indonesia menurut waktu pembentukan Berikut adalah artikel mengenai Daftar kabupaten dan/atau kota di Sumatera Barat berdasarkan waktu pembentukan yang diurutkan berdasarkan abjad. Referensi berdasarkan Undang-Undang Republik Indonesia yang pertama dikeluarkan saat pembentukan kabupaten/kota tersebut meskipun terdapat perundang-undangan terbaru ...

 

 

رودوتوبيون الإحداثيات 39°42′30″N 20°43′36″E / 39.708333333333°N 20.726666666667°E / 39.708333333333; 20.726666666667  تقسيم إداري  البلد اليونان[1]  عدد السكان  عدد السكان 1140 (2011)  معلومات أخرى منطقة زمنية ت ع م+02:00 (توقيت قياسي)،  وت ع م+03:00 (توقيت صيفي)  رمز جيونيمز 254253  تعدي�...

Ketua Dewan Perwakilan Rakyat JepangPetahanaHiroyuki Hosodasejak 10 November 2021Dewan Perwakilan RakyatGelarKetua (informal)Yang Terhormat (formal)Ditunjuk olehDPRMasa jabatanempat tahun; dapat diperbarui hanya jika terjadi pembubaranDasar hukumKonstitusi JepangDibentuk29 November 1890; 133 tahun lalu (1890-11-29)WakilWakil Ketua Dewan Perwakilan Rakyat(衆議院副議長 Shūgiin-fukugichō)Banri Kaieda(sejak 10 November 2021) Ketua Dewan Perwakilan Rakyat (衆議院議長, Shūgi...

 

 

Italian football club Football clubGrossetoFull nameSSD Unione Sportiva Grosseto 1912Nickname(s)Il Grifone (The Griffon)Biancorossi (The Red & Whites)Maremmani (The Maremmians)Torelli (The Little Bulls)Unionisti (The Unionists)Founded1912GroundStadio Olimpico Carlo Zecchini,Grosseto, ItalyCapacity10,200OwnerGiovvanni LamioniChairmanAntonio FioriniManagerVitaliano BonuccelliLeagueSerie D Group E3rd Serie D Round Robin EWebsiteClub website Home colours Away colours Third colours Unione Spor...

 

 

Kereta api PurwojayaKereta Api Purwojaya liveri spesial hari raya Idulfitri 1444 H berhenti di Stasiun BekasiInformasi umumJenis layananKereta api antarkotaStatusBeroperasiMulai beroperasi13 Maret 1995Operator saat iniKereta Api IndonesiaLintas pelayananStasiun awalCilacapStasiun akhirGambirJarak tempuh404 kmWaktu tempuh rerata6 jam 08 menit[1]Frekuensi perjalananSatu kali keberangkatan tiap hariJenis relRel beratPelayanan penumpangKelasEksekutifPengaturan tempat duduk50 tempat duduk ...

Robert (or Robin) Noble Denison Wilson, known as R. N. D. Wilson (1899 – January 1953)[1] was an Irish poet. From 1934 to 1944 he was a teacher at Rendcomb College.[2] His published work includes the collection The Holy Wells of Orris and other poems (London, John Lane The Bodley Head, 1927),[3] the style of which has been described as early Yeatsian romanticism.[4] Austin Clarke, while agreeing that the book was too much influenced by Yeats, observed th...

 

 

МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...

 

 

U.S. State Department division This article needs to be updated. The reason given is: more recent employee & budget data needed. Please help update this article to reflect recent events or newly available information. (December 2023) Bureau of East Asian and Pacific AffairsSeal of The Bureau of East Asian and Pacific AffairsBureau overviewPreceding bureauOffice of Chinese AffairsJurisdictionExecutive branch of the United StatesHeadquartersHarry S. Truman Building, Washington, D.C., United...

Pour les articles homonymes, voir Mont-Cenis. Lac du Mont-Cenis Administration Pays France département Savoie commune Val-Cenis Géographie Coordonnées 45° 14′ 16″ N, 6° 56′ 03″ E Type artificiel Montagne Massif du Mont-Cenis Superficie 6,68 km2 Altitude 1 974 m Volume 315 hm3 Hydrographie Bassin versant 295 km2 Émissaire(s) Cenise Géolocalisation sur la carte : France Lac du Mont-Cenis Géolocalisation sur la carte : Rhôn...

 

 

National Rail station in London, England Earlsfield EarlsfieldLocation of Earlsfield in Greater LondonLocationEarlsfieldLocal authorityLondon Borough of WandsworthManaged bySouth Western RailwayStation codeEADDfT categoryDNumber of platforms3 (facing 4 tracks)AccessibleYesFare zone3National Rail annual entry and exit2018–19 6.879 million[1]2019–20 6.519 million[1]2020–21 1.784 million[1]2021–22 4.184 million[1]2022–23 4.734 million[1]Key dates...

 

 

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

ГеодезіяКоординатна сітка Основи Геодезія Геодинаміка Геоматика Картографія Історія[en] Поняття Географічна відстань Фігура Землі Геоїд • Еліпсоїд Геодезичний датум Геодезична лінія Географічні координати Широта • Довгота Картографічна проєкція Референц-еліпсоїд С...

 

 

Wakil Gubernur BantenLambang provinsiPetahanalowongsejak 12 Mei 2022Masa jabatan5 tahunPejabat perdanaRatu Atut ChosiyahDibentuk11 Januari 2002; 22 tahun lalu (2002-01-11)Situs webSitus web resmi Wakil Gubernur Banten merupakan wakil kepala daerah di Banten yang bertugas menjalankan pemerintahan dan membuat kebijakan-kebijakan daerah, seperti membuat peraturan daerah bersama dengan DPRD Provinsi Banten, dan sebagainya. Dalam mengemban tugas-tugas tertentu, seorang wakil gubernur men...

 

 

馬里奧·蘇亞雷斯Mário Alberto Nobre Lopes Soares第17任葡萄牙總統任期1986年3月9日—1996年3月9日总理阿尼巴爾·卡瓦科·席爾瓦前任安東尼奧·拉馬爾霍·埃亞內斯继任沈拜奧第114任葡萄牙總理任期1983年6月9日—1985年11月6日前任鮑仕民继任阿尼巴爾·卡瓦科·席爾瓦第107任葡萄牙總理任期1976年7月23日—1978年8月28日前任魏祖承继任阿爾弗雷多·諾布雷·達科斯塔 个人资料出生(1924-12-07)1...

Para otros usos de este término, véase San Miguel. San Miguel del Pino municipio de España Iglesia de San Miguel San Miguel del PinoUbicación de San Miguel del Pino en España San Miguel del PinoUbicación de San Miguel del Pino en la provincia de ValladolidPaís  España• Com. autónoma  Castilla y León• Provincia  Valladolid• Comarca Tierra del Vino• Partido judicial Valladolid[1]​Ubicación 41°30′33″N 4°...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Spesialis tanjakan – berita · surat kabar · buku · cendekiawan · JSTOR (December 2013) Marco Pantani adalah seorang spesialis tanjakan Seorang spesialis tanjakan, adalah pembalap sepeda yang dapat berkendara ...

 

 

King of Spain from 1886 to 1931 In this Spanish name, the first or paternal surname is Borbón and the second or maternal family name is Habsburgo-Lorena. Alfonso XIIIFormal portrait, 1916King of Spain (more...) Reign17 May 1886 – 14 April 1931 (1886-05-17 – 1931-04-14)Enthronement17 May 1902PredecessorAlfonso XIISuccessorJuan Carlos IRegentMaria Christina (1886–1902)Born(1886-05-17)17 May 1886Royal Palace of Madrid, Madrid, Kingdom of SpainDie...

District of Northern Ireland (1973–2015) Human settlement in Northern IrelandBallymoney BoroughBuirg Bhaile MonaidhBoundaries 1973 to 2015Area418 km2 (161 sq mi) Ranked 17th of 26District HQBallymoneyCatholic31.8%Protestant63.1%CountryNorthern IrelandSovereign stateUnited KingdomCouncillorsMLAsNorth Antrim DUP: 3 Sinn Féin: 1 TUV: 1 UUP: 1MPsIan Paisley Jr. (DUP)Websitewww.ballymoney.gov.uk List of places UK Northern Ireland Ballymoney was a local government distri...

 

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini perlu dirapikan dan ditata ulang agar memenuhi pedoman tata letak Wikipedia. Silakan perbaiki artikel ini agar memenuhi standar Wikipedia. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standa...