Wigner–Weyl transform

In quantum mechanics, the Wigner–Weyl transform or Weyl–Wigner transform (after Hermann Weyl and Eugene Wigner) is the invertible mapping between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger picture.

Often the mapping from functions on phase space to operators is called the Weyl transform or Weyl quantization, whereas the inverse mapping, from operators to functions on phase space, is called the Wigner transform. This mapping was originally devised by Hermann Weyl in 1927 in an attempt to map symmetrized classical phase space functions to operators, a procedure known as Weyl quantization.[1] It is now understood that Weyl quantization does not satisfy all the properties one would require for consistent quantization and therefore sometimes yields unphysical answers. On the other hand, some of the nice properties described below suggest that if one seeks a single consistent procedure mapping functions on the classical phase space to operators, the Weyl quantization is the best option: a sort of normal coordinates of such maps. (Groenewold's theorem asserts that no such map can have all the ideal properties one would desire.)

Regardless, the Weyl–Wigner transform is a well-defined integral transform between the phase-space and operator representations, and yields insight into the workings of quantum mechanics. Most importantly, the Wigner quasi-probability distribution is the Wigner transform of the quantum density matrix, and, conversely, the density matrix is the Weyl transform of the Wigner function.

In contrast to Weyl's original intentions in seeking a consistent quantization scheme, this map merely amounts to a change of representation within quantum mechanics; it need not connect "classical" with "quantum" quantities. For example, the phase-space function may depend explicitly on the reduced Planck constant ħ, as it does in some familiar cases involving angular momentum. This invertible representation change then allows one to express quantum mechanics in phase space, as was appreciated in the 1940s by Hilbrand J. Groenewold[2] and José Enrique Moyal.[3][4]

In more generality, Weyl quantization is studied in cases where the phase space is a symplectic manifold, or possibly a Poisson manifold. Related structures include the Poisson–Lie groups and Kac–Moody algebras.

Definition of the Weyl quantization of a general observable

The following explains the Weyl transformation on the simplest, two-dimensional Euclidean phase space. Let the coordinates on phase space be (q,p), and let f be a function defined everywhere on phase space. In what follows, we fix operators P and Q satisfying the canonical commutation relations, such as the usual position and momentum operators in the Schrödinger representation. We assume that the exponentiated operators and constitute an irreducible representation of the Weyl relations, so that the Stone–von Neumann theorem (guaranteeing uniqueness of the canonical commutation relations) holds.

Basic formula

The Weyl transform (or Weyl quantization) of the function f is given by the following operator in Hilbert space,[5][6]

Throughout, ħ is the reduced Planck constant.

It is instructive to perform the p and q integrals in the above formula first, which has the effect of computing the ordinary Fourier transform of the function f, while leaving the operator . In that case, the Weyl transform can be written as[7]

.

We may therefore think of the Weyl map as follows: We take the ordinary Fourier transform of the function , but then when applying the Fourier inversion formula, we substitute the quantum operators and for the original classical variables p and q, thus obtaining a "quantum version of f."

A less symmetric form, but handy for applications, is the following,

In the position representation

The Weyl map may then also be expressed in terms of the integral kernel matrix elements of this operator,[8]

Inverse map

The inverse of the above Weyl map is the Wigner map (or Wigner transform), which was introduced by Eugene Wigner,[9] which takes the operator Φ back to the original phase-space kernel function f,

For example, the Wigner map of the oscillator thermal distribution operator is[6]

If one replaces in the above expression with an arbitrary operator, the resulting function f may depend on the reduced Planck constant ħ, and may well describe quantum-mechanical processes, provided it is properly composed through the star product, below.[10] In turn, the Weyl map of the Wigner map is summarized by Groenewold's formula,[6]

Weyl quantization of polynomial observables

While the above formulas give a nice understanding of the Weyl quantization of a very general observable on phase space, they are not very convenient for computing on simple observables, such as those that are polynomials in and . In later sections, we will see that on such polynomials, the Weyl quantization represents the totally symmetric ordering of the noncommuting operators and . For example, the Wigner map of the quantum angular-momentum-squared operator L2 is not just the classical angular momentum squared, but it further contains an offset term −3ħ2/2, which accounts for the nonvanishing angular momentum of the ground-state Bohr orbit.

Properties

Weyl quantization of polynomials

The action of the Weyl quantization on polynomial functions of and is completely determined by the following symmetric formula:[11]

for all complex numbers and . From this formula, it is not hard to show that the Weyl quantization on a function of the form gives the average of all possible orderings of factors of and factors of :where , and is the set of permutations on N elements.

For example, we have

While this result is conceptually natural, it is not convenient for computations when and are large. In such cases, we can use instead McCoy's formula[12]

This expression gives an apparently different answer for the case of from the totally symmetric expression above. There is no contradiction, however, since the canonical commutation relations allow for more than one expression for the same operator. (The reader may find it instructive to use the commutation relations to rewrite the totally symmetric formula for the case of in terms of the operators , , and and verify the first expression in McCoy's formula with .)

It is widely thought that the Weyl quantization, among all quantization schemes, comes as close as possible to mapping the Poisson bracket on the classical side to the commutator on the quantum side. (An exact correspondence is impossible, in light of Groenewold's theorem.) For example, Moyal showed the

Theorem: If is a polynomial of degree at most 2 and is an arbitrary polynomial, then we have .

Weyl quantization of general functions

See also

References

  1. ^ Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID 121036548.
  2. ^ Groenewold, H. J. (1946). "On the Principles of elementary quantum mechanics". Physica. 12 (7): 405–446. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
  3. ^ Moyal, J. E.; Bartlett, M. S. (1949). "Quantum mechanics as a statistical theory". Mathematical Proceedings of the Cambridge Philosophical Society. 45 (1): 99–124. Bibcode:1949PCPS...45...99M. doi:10.1017/S0305004100000487. S2CID 124183640.
  4. ^ Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 1: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
  5. ^ Folland, G. (1989). Harmonic Analysis in Phase Space. The Annals of mathematics studies. Vol. 122. Princeton, N.J.: Princeton University Press. ISBN 978-0-691-08528-9.
  6. ^ a b c Curtright, T. L.; Fairlie, D. B.; Zachos, C. K. (2014). A Concise Treatise on Quantum Mechanics in Phase Space (PDF). World Scientific. ISBN 9789814520430.
  7. ^ Hall 2013 Section 13.3
  8. ^ Hall 2013 Definition 13.7
  9. ^ Wigner, E. (1932). "On the Quantum Correction for Thermodynamic Equilibrium". Physical Review. 40 (5): 749–759. doi:10.1103/PhysRev.40.749.
  10. ^ Kubo, R. (1964). "Wigner Representation of Quantum Operators and Its Applications to Electrons in a Magnetic Field". Journal of the Physical Society of Japan. 19 (11): 2127–2139. Bibcode:1964JPSJ...19.2127K. doi:10.1143/JPSJ.19.2127.
  11. ^ Hall 2013 Proposition 13.3
  12. ^ McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", Proc Nat Acad Sci USA 19 674, online .

Further reading

Read other articles:

Peta infrastruktur dan tata guna lahan di Komune Jouac.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiJouac merupakan sebuah komune di departemen Haute-Vienne di Prancis. Lihat pula Komune di departemen Haute-Vienne Referensi INSEE lbsKomune di departemen Haute-Vienne Aixe-sur-Vienne Ambazac Arnac-la-Poste Augne Aureil Azat-le-Ris Balledent La Bazeuge Beaumont-du...

 

Francesco Morosini Doge VenesiaMasa jabatan1688–1694 Sunting kotak info • L • B Francesco Morosini adalah Doge Republik Venesia. Doge sendiri adalah jabatan yang dipegang oleh pemimpin Republik Venesia pada masa lampau. Ia mulai menjabat pada tahun 1688. Masa kekuasaannya sebagai Doge Venesia kemudian berakhir pada tahun 1694. Referensi Norwich, John Julius. A History of Venice. New York: Vintage Books, 1989. ISBN 0-679-72197-5. Pengawasan otoritas Umum Integrated Authority Fi...

 

Pour les articles homonymes, voir Meurtre (homonymie). Cet article est une ébauche concernant la criminalité, la criminologie et la mort. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Le meurtre de saint Thomas Becket, Joseph Martin Kronheim, XIXe siècle. Un meurtre est un homicide[1] commis volontairement par son auteur. Par pays Les pays appliquent différemment le critère de préméditation et util...

Artikel ini bukan mengenai RCTI atau Rajawali TV Blitar. Untuk kegunaan lain, lihat RTV. RTVNama sebelumnyaB-Channel (2009—2014)JenisJaringan televisiSloganMakin CakepNegaraIndonesiaBahasaBahasa IndonesiaPendiriSofia KoswaraTanggal siaran perdana20 Oktober 2008 (siaran percobaan)Tanggal peluncuran1 November 2009 (sebagai B-Channel)3 Mei 2014 (sebagai RTV)Kantor pusatThamrin City, Jl. Thamrin Boulevard, Kebon Melati, Tanah Abang, Jakarta Pusat 10230, IndonesiaWilayah siaranNasionalPemil...

 

Untuk BintangAlbum studio karya CokelatDirilis21 Februari 2000Direkam17 Agustus 1999GenreRockDurasi44:45LabelBMG Music IndonesiaProduserJan DjuhanaKronologi Cokelat Untuk Bintang (2000) Rasa Baru (2001) Singel dalam album Untuk Bintang Dendam Pergi Rasa Baru2001 Untuk Bintang adalah album studio pertama dari grup musik rock Indonesia Cokelat yang dirilis pada tahun 2000. Album ini mengusung lagu andalan melalui lagu Dendam dan Pergi.[1] Daftar lagu No.JudulLirikMusikDurasi1.Pergi!...

 

Web service which allowed users to save and share citations to academic papers CiteULikeCreated byRichard CameronLaunchedNovember 2004; 19 years ago (2004-11)Current statusOffline CiteULike was a web service which allowed users to save and share citations to academic papers.[1] Based on the principle of social bookmarking, the site worked to promote and to develop the sharing of scientific references amongst researchers. In the same way that it is poss...

Former constituency of the National Assembly of Pakistan NA-240 Karachi South-IIConstituencyfor the National Assembly of PakistanRegionLyari Town (partly), Garden Town and Aram Bagh Town (partly) of Karachi South in KarachiElectorate385,971 [1]Current constituencyCreated2002Member(s)Arshad Abdullah Vohra NA-240 Karachi South-II (این اے-240، کراچی جنوبی -2) is a constituency for the National Assembly of Pakistan. It mainly comprised the historic Saddar Town neighborhood...

 

American diplomat Daniel SpeckhardUnited States Ambassador to GreeceIn officeNovember 29, 2007 – September 9, 2010Nominated byGeorge W. BushPreceded byCharles P. RiesSucceeded byDaniel Bennett SmithUnited States Ambassador to BelarusIn officeSeptember 18, 1997 – August 5, 2000Nominated byBill ClintonPreceded byKenneth S. YalowitzSucceeded byMichael G. Kozak Personal detailsBorn (1959-06-11) June 11, 1959 (age 64)Clintonville, Wisconsin, U.S.Political partyDemocratic...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shichiten Hakki Shijou Shugi! – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this template message) 2007 single by KotokoShichiten Hakki Shijou Shugi!Single by Kotokofrom the album Epsilon no Fune B-sideSceneRelease...

Xiaolongbao Xiaolongbao (Pinyin: Xiǎolóngbāo, dibaca: siaw long pao) yang memiliki arti roti keranjang kecil juga dikenal sebagai pangsit yang memiliki kuah didalamnya, karena dia adalah sejenis roti yang memiliki isi. Makanan ini berasal dari Tiongkok bagian selatan, terutama Shanghai dan Suzhou. Makanan ini biasa disajikan menggunakan keranjang bambu karena proses memasak makanan ini memang dikukus menggunakan kukusan bambu. Lihat pula Bakpao Wikimedia Commons memiliki media mengenai Xia...

 

St. Louis streetcar strikeFatal conflict between strikers and posse comitatusDateMay 9, 1900 – September 14, 1900LocationSt. Louis, MissouriMethodsStrikingParties AASEREA Union St. Louis Transit Company Metropolitan Police Posse comitatus Lead figures Edwards Whitaker John H. Cavender Number 3,000 Workers 1,000 Policemen 2,500 Posse comitatus CasualtiesDeath(s)14Injuries200vteNorth American transit strikesStreetcar strikes St. Louis 1900 Indianapolis 1892 Los Angeles 1903 San Francisco 1907...

 

Concert hall in Downtown Atlanta, Georgia, United States For other uses, see Tabernacle (disambiguation). The TabernacleExterior of the venue (c.2009)Former namesHouse of Blues (1996-97)Address152 Luckie St NWAtlanta, GA 30303-2006LocationDowntown AtlantaOwnerLive NationCapacity2,600ConstructionBroke groundAugust 17, 1909 (1909-08-17)OpenedSeptember 3, 1911 (1911-09-03)Renovated1994-9620082014Construction cost$125,000($4.09 million in 2023 dollars[1]...

State park in Michigan, United States Straits State ParkView of Mackinac Bridge from the state parkLocation within the state of MichiganShow map of MichiganStraits State Park (the United States)Show map of the United StatesLocationMoran Township and St. IgnaceMackinac County, MichiganNearest citySt. Ignace, MichiganCoordinates45°51′10″N 84°43′10″W / 45.85278°N 84.71944°W / 45.85278; -84.71944Area181 acres (0.73 km2)Established1924Governing bo...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. AlokLahirAlok Achkar Peres Petrillo26 Agustus 1991 (umur 32)Goiânia, Goiás, BrasilKebangsaanBrasilPekerjaanDisjokiPemusikProduser rekamanTahun aktif2004—sekarangSuami/istriRomana Novais ​(m. 2019)​Anak Ravi N...

 

Village in County Tipperary, Ireland Village in Munster, IrelandBallyporeen Béal Átha PóirinVillageThe R665 through Ballyporeen, once part of the main Dublin - Cork coach road.BallyporeenLocation in IrelandCoordinates: 52°16′12″N 8°06′00″W / 52.26994°N 8.10001°W / 52.26994; -8.10001CountryIrelandProvinceMunsterCountyCounty TipperaryDáil ÉireannTipperaryElevation82 m (269 ft)Population (2016)[1]318Dialing code0 52, +000 353 (0)52I...

Former U.S. government scientific agency Environmental Science Services AdministrationSeal.Flag.Agency overviewFormedon July 13, 1965; 58 years ago (1965-07-13)Preceding agenciesUnited States Weather BureauUnited States Coast and Geodetic SurveyDissolvedon October 3, 1970; 53 years ago (1970-10-03)Superseding agencyNational Oceanic and Atmospheric AdministrationJurisdictionUnited States federal governmentHeadquartersRockville, MarylandAgency executiveRobert...

 

For related races, see 2018 United States gubernatorial elections. 2018 Connecticut gubernatorial election ← 2014 November 6, 2018 2022 → Turnout61.4%   Nominee Ned Lamont Bob Stefanowski Party Democratic Republican Alliance Working Families Independent Running mate Susan Bysiewicz Joe Markley Popular vote 694,510 650,138 Percentage 49.37% 46.21% County results Municipality results Congressional district results Precinct resultsLamont:    &#...

 

Places generally open and accessible to everyone In public redirects here. For the song by Kelis featuring Nas, see In Public. For the film, see In Public (film). The examples and perspective in this United States may not represent a worldwide view of the subject. You may improve this United States, discuss the issue on the talk page, or create a new United States, as appropriate. (September 2011) (Learn how and when to remove this message) Urban space (Piazza della Signoria, Florence) A publ...

1954 film by Val Guest The Men of Sherwood ForestDirected byVal GuestWritten byAllan MacKinnonProduced byMichael CarrerasStarringDon TaylorReginald BeckwithEileen MooreCinematographyWalter J. HarveyEdited byJames NeedsMusic byDoreen CarwithenProductioncompanyHammer Film ProductionsDistributed byExclusive Films Astor Pictures (US)Release date 17 November 1954 (1954-11-17) Running time77 minutesCountryUnited KingdomLanguageEnglish The Men of Sherwood Forest is a 1954 British adve...

 

テレビ番組・中継内での各種情報(終了した番組・中継を含みます)は、DVDやBlu-rayなどでの販売や公式なネット配信、または信頼できる紙媒体またはウェブ媒体が紹介するまで、出典として用いないで下さい。検証可能性に基づき除去される場合があります。 白黒アンジャッシュジャンル お笑い番組 / トーク番組 / バラエティ番組出演者 アンジャッシュ(児嶋一哉、...