Hopf–Rinow theorem

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931.[1] Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

Statement

Let be a connected and smooth Riemannian manifold. Then the following statements are equivalent:[2]

  1. The closed and bounded subsets of are compact;
  2. is a complete metric space;
  3. is geodesically complete; that is, for every the exponential map expp is defined on the entire tangent space

Furthermore, any one of the above implies that given any two points there exists a length minimizing geodesic connecting these two points (geodesics are in general critical points for the length functional, and may or may not be minima).

In the Hopf–Rinow theorem, the first characterization of completeness deals purely with the topology of the manifold and the boundedness of various sets; the second deals with the existence of minimizers to a certain problem in the calculus of variations (namely minimization of the length functional); the third deals with the nature of solutions to a certain system of ordinary differential equations.

Variations and generalizations

In fact these properties characterize completeness for locally compact length-metric spaces.[4]
  • The theorem does not hold for infinite-dimensional manifolds. The unit sphere in a separable Hilbert space can be endowed with the structure of a Hilbert manifold in such a way that antipodal points cannot be joined by a length-minimizing geodesic.[5] It was later observed that it is not even automatically true that two points are joined by any geodesic, whether minimizing or not.[6]
  • The theorem also does not generalize to Lorentzian manifolds: the Clifton–Pohl torus provides an example (diffeomorphic to the two-dimensional torus) that is compact but not complete.[7]

Notes

  1. ^ Hopf, H.; Rinow, W. (1931). "Ueber den Begriff der vollständigen differentialgeometrischen Fläche". Commentarii Mathematici Helvetici. 3 (1): 209–225. doi:10.1007/BF01601813.
  2. ^ do Carmo 1992, Chapter 7; Gallot, Hulin & Lafontaine 2004, Section 2.C.5; Jost 2017, Section 1.7; Kobayashi & Nomizu 1963, Section IV.4; Lang 1999, Section VIII.6; O'Neill 1983, Theorem 5.21 and Proposition 5.22; Petersen 2016, Section 5.7.1.
  3. ^ Bridson & Haefliger 1999, Proposition I.3.7; Gromov 1999, Section 1.B.
  4. ^ Burago, Burago & Ivanov 2001, Section 2.5.3.
  5. ^ Lang 1999, pp. 226–227.
  6. ^ Atkin, C. J. (1975), "The Hopf–Rinow theorem is false in infinite dimensions", The Bulletin of the London Mathematical Society, 7 (3): 261–266, doi:10.1112/blms/7.3.261, MR 0400283
  7. ^ Gallot, Hulin & Lafontaine 2004, Section 2.D.4; O'Neill 1983, p. 193.

References

Read other articles:

Flag carrier of Cambodia Cambodia Angkor Air អាកាសចរណ៍ជាតិ កម្ពុជា អង្គរ អ៊ែរ IATA ICAO Callsign K6 KHV CAMBODIA AIR[1] Commenced operations28 July 2009; 14 years ago (2009-07-28)HubsPhnom PenhSecondary hubsSiem ReapFocus citiesHo Chi Minh CityFrequent-flyer programAngkorWardsFleet size6Destinations21Parent company Royal Cambodia Government (51%) Undisclosed (49%)HeadquartersPhnom Penh, CambodiaKey peopleH.E.T...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Universitas Malaysia Sarawak – berita · surat kabar · buku · cendekiawan · JSTOR Universitas Malaysia Sarawak (bahasa Melayu: Universiti Malaysia Sarawak) adalah salah sebuah universitas yang terletak di...

 

 

Negara bagian di Sudan (lihat daftar) Saat ini, Sudan terbagi dalam 15 negara bagian. Sejarah Pada tahun 1991, Pemerintah Sudan mengubah struktur pembagian administratif dari provinsi (mudiriya) menjadi negara bagian federal. Pada 14 Februari 1994, struktur ini diubah kembali dengan pembentukan 26 negara bagian (wilayat). Pada tahun 2005, terbentuk Pemerintah Otonomi Sudan Selatan sehingga negara bagian Bahrul Jabal berubah nama menjadi Khatulistiwa Tengah. Pada bulan Agustus 2005, Kurdufan B...

Cet article est une ébauche concernant le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article détaillé : Défenseur des droits. Article 71-1 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature XIIIe législature de la Cinquième République français...

 

 

Bengali-speaking tribal community For the Assamese surname, see Baruah. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Barua Bangladesh – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) BaruaTotal population1.2 million[citation needed&...

 

 

Island in Nunavut, Canada Not to be confused with Ontario's Stag Island. Stag IslandStag Island's location in James BayStag IslandShow map of NunavutStag IslandShow map of CanadaGeographyLocationJames BayCoordinates51°39′01″N 79°04′28″W / 51.65028°N 79.07444°W / 51.65028; -79.07444 (Stag Island)ArchipelagoArctic ArchipelagoAdministrationCanadaTerritoryNunavutRegionQikiqtaalukDemographicsPopulation0 Stag Island is an uninhabited island in the souther...

Totemic animal of the god Set    Depictions of the Set animal(Gardiner E20, E21, C7)[1](E20, E21, C7) in hieroglyphs The Set-animal, Sha, after an original by E. A. Wallis Budge.[2][page needed] In ancient Egyptian art, the Set animal, or sha, is the totemic animal of the god Set. Because Set was identified with the Greek monster Typhon, the animal is also commonly known as the Typhonian animal or Typhonic beast. Unlike other totemic animals, the Set ani...

 

 

Association football club in England Football clubHolmesdaleFull nameHolmesdale Football ClubNickname(s)The DalersFounded1956GroundOakley Road, BromleyChairmanSimon KidbyManagerAndy ConstableLeagueSouthern Counties East League Premier Division2022–23Southern Counties East League Premier Division, 17th of 20 Home colours Away colours Holmesdale Football Club is a football club originally based in South Norwood, London, England. Affiliated to the Kent County Football Association, they are cur...

 

 

45th Premier of New South Wales The HonourableGladys Berejiklian45th Premier of New South WalesElections: 2019In office23 January 2017 – 5 October 2021MonarchElizabeth IIGovernorDavid HurleyMargaret BeazleyDeputyJohn BarilaroPreceded byMike BairdSucceeded byDominic Perrottet Ministerial positions 62nd Treasurer of New South WalesIn office2 April 2015 – 30 January 2017PremierMike BairdPreceded byAndrew ConstanceSucceeded byDominic PerrottetMinister for TransportIn office3...

Village in Devon, England Not to be confused with Morley. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Moreleigh – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this message) Human settlement in EnglandMoreleighAll Saints ChurchMoreleighLocation within DevonOS&#...

 

 

Questa voce sugli argomenti università di Israele e Tel Aviv è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Università di Tel Aviv UbicazioneStato Israele CittàTel Aviv Dati generaliFondazione1956 Tipopubblica RettoreMark Shtaif Studenti29 000 AffiliazioniUnimed Mappa di localizzazione Sito web Modifica dati su Wikidata · Manuale L'Università di Tel Aviv (in ebraico אוניברסיטת תל־אביב‎?; in inglese: Tel...

 

 

هوتومناطق الوجود المميزةالبلد بورونديرواندا رواندا، بوروندي، جمهورية الكونغو الديمقراطية، تنزانيااللغات Rwanda-Rundi، English، إفريقيا الناطقة بالفرنسيةالدين مسيحيةالمجموعات العرقية المرتبطةمجموعات ذات علاقة Other بانتويون; especially توتسي and Twaتعديل - تعديل مصدري - تعديل ويكي بيانا...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Brighton-le-Sands, Merseyside – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) Human settlement in EnglandBrighton-le-SandsRoyal Oak public house, Brighton-le-SandsBrighton-le-SandsLocation within Merseys...

 

 

State prison in Pendleton, Oregon, US Eastern Oregon Correctional InstitutionLocationPendleton, Oregon, United States45°40′17″N 118°49′02″W / 45.6715°N 118.8171°W / 45.6715; -118.8171StatusOperationalSecurity classMedium (male)Capacity1,600 inmatesOpened1985Managed byOregon Department of CorrectionsWardenSue WashburnCityPendletonState/provinceOregonWebsitehttps://www.oregon.gov/doc/about/Pages/prison-locations.aspx The Eastern Oregon Correctional Institutio...

 

 

British Army general (1717–1797) Lord Amherst redirects here. For the first earl, see William Amherst, 1st Earl Amherst. For other uses, see Amherst. The Right Honourable Field MarshalThe Lord AmherstKBPortrait by Joshua ReynoldsCommander-in-Chief, North AmericaIn office1758–1763Crown Governor of VirginiaIn office1759–1768Monarchs George II George III Preceded byThe Earl of LoudounSucceeded byThe Lord BotetourtGovernor of the Province of QuebecIn office1760–1763MonarchGeorge IIIPreced...

Early in the race at Daegu, David Rudisha ahead of Abubaker Kaki. Eventual bronze medalist Yuriy Borzakovskiy obscured behind Alfred Kirwa YegoOfficial VideoEvents at the2011 World ChampionshipsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField e...

 

 

三党合意(さんとうごうい)とは、2012年の野田内閣下において民主党、自由民主党、公明党の三党間において取り決められた、社会保障と税の一体改革に関する合意。2012年(平成24年)6月21日に三党の幹事長会談が行われ、三党合意を確約する「三党確認書」が、作成された[1]。 かつての自民党政権においては、2007年の福田康夫内閣により社会保障国民会議が開...

 

 

Medaglia commemorativa della Legge sulle libere città regie Nella storia della Polonia, una città regia o città reale (in polacco: miasto królewskie) era un insediamento urbano all'interno delle terre della corona (polacco: królewszczyzna).[1] Le città reali più influenti godettero del diritto di voto durante il periodo delle elezioni libere in Polonia (1572-1791). Queste città erano Danzica, Varsavia, Cracovia, Poznań, Leopoli, Vilnius, Toruń, Lublino, Kamianets ed Elbląg....

عبد اللطيف رشيد (بالسورانية الكردية: لەتیف ڕەشید)‏  رشيد في عام 2023 رئيس جمهورية العراق التاسع في المنصب13 تشرين الأول/أكتوبر 2022 – حتى الآن رئيس الوزراء محمد شياع السوداني برهم صالح   وزير الموارد المائية في المنصبأيلول/سبتمبر 2003 – كانون الأول/ديسمبر 2010 رئيس الوزراء ...

 

 

Neighborhood in New York City Hell's Kitchen redirects here. For other uses, see Hell's Kitchen (disambiguation). Neighborhood in New York CityHell's KitchenNeighborhoodLooking south on Ninth Avenue from 49th StreetNickname(s): HK, ClintonCoordinates: 40°45′51″N 73°59′32″W / 40.76417°N 73.99222°W / 40.76417; -73.99222Country United StatesState New YorkCityNew York CityBoroughManhattanCommunity DistrictManhattan 4[1]Area • ...