Share to: share facebook share twitter share wa share telegram print page

Hermitian manifold

In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure.

A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold. By dropping this condition, we get an almost Hermitian manifold.

On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure) that depends only on the chosen metric and the almost complex structure. This form is always non-degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an almost Kähler structure. If both the almost complex structure and the fundamental form are integrable, then we have a Kähler structure.

Formal definition

A Hermitian metric on a complex vector bundle over a smooth manifold is a smoothly varying positive-definite Hermitian form on each fiber. Such a metric can be viewed as a smooth global section of the vector bundle such that for every point in , for all , in the fiber and for all nonzero in .

A Hermitian manifold is a complex manifold with a Hermitian metric on its holomorphic tangent bundle. Likewise, an almost Hermitian manifold is an almost complex manifold with a Hermitian metric on its holomorphic tangent bundle.

On a Hermitian manifold the metric can be written in local holomorphic coordinates as where are the components of a positive-definite Hermitian matrix.

Riemannian metric and associated form

A Hermitian metric h on an (almost) complex manifold M defines a Riemannian metric g on the underlying smooth manifold. The metric g is defined to be the real part of h:

The form g is a symmetric bilinear form on TMC, the complexified tangent bundle. Since g is equal to its conjugate it is the complexification of a real form on TM. The symmetry and positive-definiteness of g on TM follow from the corresponding properties of h. In local holomorphic coordinates the metric g can be written

One can also associate to h a complex differential form ω of degree (1,1). The form ω is defined as minus the imaginary part of h:

Again since ω is equal to its conjugate it is the complexification of a real form on TM. The form ω is called variously the associated (1,1) form, the fundamental form, or the Hermitian form. In local holomorphic coordinates ω can be written

It is clear from the coordinate representations that any one of the three forms h, g, and ω uniquely determine the other two. The Riemannian metric g and associated (1,1) form ω are related by the almost complex structure J as follows for all complex tangent vectors u and v. The Hermitian metric h can be recovered from g and ω via the identity

All three forms h, g, and ω preserve the almost complex structure J. That is, for all complex tangent vectors u and v.

A Hermitian structure on an (almost) complex manifold M can therefore be specified by either

  1. a Hermitian metric h as above,
  2. a Riemannian metric g that preserves the almost complex structure J, or
  3. a nondegenerate 2-form ω which preserves J and is positive-definite in the sense that ω(u, Ju) > 0 for all nonzero real tangent vectors u.

Note that many authors call g itself the Hermitian metric.

Properties

Every (almost) complex manifold admits a Hermitian metric. This follows directly from the analogous statement for Riemannian metric. Given an arbitrary Riemannian metric g on an almost complex manifold M one can construct a new metric g′ compatible with the almost complex structure J in an obvious manner:

Choosing a Hermitian metric on an almost complex manifold M is equivalent to a choice of U(n)-structure on M; that is, a reduction of the structure group of the frame bundle of M from GL(n, C) to the unitary group U(n). A unitary frame on an almost Hermitian manifold is complex linear frame which is orthonormal with respect to the Hermitian metric. The unitary frame bundle of M is the principal U(n)-bundle of all unitary frames.

Every almost Hermitian manifold M has a canonical volume form which is just the Riemannian volume form determined by g. This form is given in terms of the associated (1,1)-form ω by where ωn is the wedge product of ω with itself n times. The volume form is therefore a real (n,n)-form on M. In local holomorphic coordinates the volume form is given by

One can also consider a hermitian metric on a holomorphic vector bundle.

Kähler manifolds

The most important class of Hermitian manifolds are Kähler manifolds. These are Hermitian manifolds for which the Hermitian form ω is closed: In this case the form ω is called a Kähler form. A Kähler form is a symplectic form, and so Kähler manifolds are naturally symplectic manifolds.

An almost Hermitian manifold whose associated (1,1)-form is closed is naturally called an almost Kähler manifold. Any symplectic manifold admits a compatible almost complex structure making it into an almost Kähler manifold.

Integrability

A Kähler manifold is an almost Hermitian manifold satisfying an integrability condition. This can be stated in several equivalent ways.

Let (M, g, ω, J) be an almost Hermitian manifold of real dimension 2n and let be the Levi-Civita connection of g. The following are equivalent conditions for M to be Kähler:

  • ω is closed and J is integrable,
  • J = 0,
  • ∇ω = 0,
  • the holonomy group of is contained in the unitary group U(n) associated to J,

The equivalence of these conditions corresponds to the "2 out of 3" property of the unitary group.

In particular, if M is a Hermitian manifold, the condition dω = 0 is equivalent to the apparently much stronger conditions ω = ∇J = 0. The richness of Kähler theory is due in part to these properties.

References

  • Griffiths, Phillip; Joseph Harris (1994) [1978]. Principles of Algebraic Geometry. Wiley Classics Library. New York: Wiley-Interscience. ISBN 0-471-05059-8.
  • Kobayashi, Shoshichi; Katsumi Nomizu (1996) [1963]. Foundations of Differential Geometry, Vol. 2. Wiley Classics Library. New York: Wiley Interscience. ISBN 0-471-15732-5.
  • Kodaira, Kunihiko (1986). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. New York: Springer. ISBN 3-540-22614-1.

Read other articles:

Voce principale: Società Sportiva Calcio Napoli. In questa voce sono riportate informazione sui calciatori della Società Sportiva Calcio Napoli, società calcistica italiana con sede a Napoli. Indice 1 Capitani 2 Maglie ritirate 3 Record 3.1 Classifica assoluta presenze e reti in partite ufficiali 3.2 Capocannonieri per singola stagione 3.2.1 In competizioni nazionali 3.3 Record anagrafici 3.4 Altri record individuali 4 Calciatori premiati 4.1 A livello nazionale 4.1.1 In altri paesi 4.2 A liv…

تحتاج هذه المقالة كاملةً أو أجزاءً منها إلى تدقيق لغوي أو نحوي. فضلًا ساهم في تحسينها من خلال الصيانة اللغوية والنحوية المناسبة. (يونيو 2020) شعبية الواحات     الإحداثيات 30°N 22°E / 30°N 22°E / 30; 22  [1] تقسيم إداري  البلد ليبيا[2]  التقسيم الأعلى ليبيا …

Tan PassakornnateeTan PassakornnateeLahirTan Passakornnatee4 April 1959 (umur 64)Kebangsaan ThailandPekerjaanPengusahaDikenal atasPendiri Oishi Group, Ichitan Company dan Double Drink CompanySuami/istriSunisa PassakornnateeAnakGet, Gaigai Tan Passakornnatee (Thai: ตัน ภาสกรนที; kelahiran 4 April 1959) adalah seorang pengusaha Thai, yang paling dikenal sebagai pendiri dari Oishi Group dari restoran-restoran Jepang. Produk tersebut membuatnya sukses dan dikenal di T…

Peta Lokasi Kota Pematangsiantar di Sumatera Utara Berikut adalah daftar kecamatan dan kelurahan di Kota Pematangsiantar, Provinsi Sumatera Utara, Indonesia. Kota Pematang Siantar terdiri dari 8 kecamatan dan 53 kelurahan dengan luas wilayah mencapai 55,66 km² dan jumlah penduduk sekitar 281.357 jiwa (2017) dengan kepadatan penduduk 5.055 jiwa/km².[1][2] Daftar kecamatan dan kelurahan di Kota Pematang Siantar, adalah sebagai berikut: Kode Kemendagri Kecamatan Jumlah Kelurahan D…

Грехем Чейні Загальна інформаціяПовне ім'я Грехем Френсіс ЧейніГромадянство  АвстраліяНародився 27 квітня 1969(1969-04-27) (54 роки)Новий Південний УельсВагова категорія перша напівсередня, напівсередняЗріст 175Професіональна кар'єраПерший бій 22 квітня 1991Останній бій 25 березн…

President of Honduras (1839–1907) In this Spanish name, the first or paternal surname is Sierra and the second or maternal family name is Romero. Terencio Esteban Sierra RomeroPresident of HondurasIn office1 February 1899 – 1 February 1903Vice PresidentJosé María ReinaPreceded byPolicarpo BonillaSucceeded byJuan Ángel Arias Boquín Personal detailsBorn1839 (1839)ComayaguaDied1907 (1908)Political partyLiberal Party of Honduras Terencio Esteban Sierra Romero (16 N…

فرانسيس هاغروب (بالنرويجية البوكمول: Francis Hagerup)‏    معلومات شخصية الميلاد 22 يناير 1853(1853-01-22)هورتن الوفاة 8 فبراير 1921 (68 سنة)كريستيانية  [لغات أخرى]‏  مواطنة النرويج  عضو في الأكاديمية الملكية السويدية للعلوم،  والرابطة النرويجية لحقوق المرأة،  ومعهد القا

American politician Michelle SalzmanMember of the Florida House of Representativesfrom the 1st districtIncumbentAssumed office November 3, 2020Preceded byMike Hill Personal detailsBorn (1977-07-05) July 5, 1977 (age 46)Texas, U.S.Political partyRepublicanSpousePhillip SalzmanChildren3Alma materPensacola State College (AAS)University of West Florida (BSBA)OccupationSmall business ownerWebsiteCampaign websiteMilitary serviceAllegiance United StatesBranch/service Unit…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Koko Liem – berita · surat kabar · buku · cendekiawan · JSTOR Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikiny…

Нижче наведені футбольні події 1915 року у всьому світі. Засновані клуби Ліворно (Італія) Ланус (Аргентина) Скейд (Норвегія) Національні чемпіони Аргентина: Расінг (Авельянеда) Австрія: Віенер Данія: Б.93 Англія: Евертон Ісландія: Фрам Італія: Дженоа Нідерланди: Спарта (Роттерда…

1939 film by Alfred L. Werker The Adventures of Sherlock Holmes1939 US theatrical posterDirected byAlfred L. WerkerWritten byCharacters:Arthur Conan DoylePlay:William GilletteScreenplay:Edwin Blum[1]William A. DrakeProduced byDarryl F. ZanuckStarringBasil RathboneNigel BruceIda LupinoGeorge ZuccoAlan MarshalCinematographyLeon ShamroyEdited byRobert BischoffMusic byRobert Russell BennettCyril J. MockridgeDistributed by20th Century FoxRelease date September 1, 1939 (1939-09-…

この項目では、19世紀の探検家について説明しています。20世紀-21世紀の歴史地理学者については「デイヴィッド・N・リヴィングストン」をご覧ください。 この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2019年12月) リ…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 滋賀県道34号多賀永源寺線 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年9月) 主要地方道 滋賀県道34号 多賀永…

  لمعانٍ أخرى، طالع فرعون (توضيح). فرعون تأليف ياسر عبد المجيدعمرو الشامي إخراج محمد علي  [لغات أخرى]‏  بطولة خالد صالحجومانا مرادأحمد صفوت البلد  مصر لغة العمل ‍العربية شارة البداية تامر عاشور شارة النهاية تامر عاشور منتج تريلر للإنتاج الفني والتوزيع القن…

Railway station in Kawachinagano, Osaka Prefecture, Japan Shionomiya Station汐ノ宮駅Shionomiya StationGeneral informationLocation1-3, Shionomiyachō, Kawachinagano-shi, Osaka-fu 586-0011JapanCoordinates34°28′1.5″N 135°34′45.4″E / 34.467083°N 135.579278°E / 34.467083; 135.579278Operated by Kintetsu RailwayLine(s) Nagano LineDistance28.8 km from Ōsaka AbenobashiPlatforms1 side platformConnections Other informationStation codeO22WebsiteOfficial websiteH…

مقدمات السكري Prediabetes معلومات عامة الاختصاص علم الغدد الصم  من أنواع السكري،  ومرض استقلاب الغلوكوز  [لغات أخرى]‏  تعديل مصدري - تعديل   جزءٌ من سلسلةوزن جسم الإنسان المفاهيم العامة سمنة (وبائيات البدانة) فرط الوزن نحافة شكل الجسم زيادة الوزن فقدان الوزن زياد…

This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (June 2019) American television producer and writer Jordan YoungOccupation(s)Producer, writerYears active2000–presentTelevisionBoJack HorsemanDrawn TogetherRaising HopeLife in Pieces Jordan Young is an American television producer and writer best known for BoJack Hor…

Імператор Сакураматіяп. 桜町天皇 Народився 8 лютого 1720(1720-02-08)Кіото, ЯпоніяПомер 28 травня 1750(1750-05-28) (30 років)Кіото, ЯпоніяПоховання ЯпоніяКраїна  Сьоґунат ЕдоЯпоніяДіяльність суверенЗнання мов японськаТитул імператор ЯпоніїПосада імператор ЯпоніїРід Імператорський дім …

This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Awful writing at many places, very bad grammar, Manusmriti mention seems highly pushed in life section, it needs to verify does the source says that? Please help improve this article if you can. (March 2023) (Learn how and when to remove this template message)Indian social reformer (1831–1898) Savitribai Jyotirao PhulePhule on a 1998 Indian stampBorn(1831-01-03)3 January 1831Naigaon, Bombay Preside…

У этого термина существуют и другие значения, см. Двор (значения). Двор дворянина под Новгородом, рисунок Н. Витсена, 1664 год.В. Ф. Тимм. Крестьянский двор. Типичный двор-колодец в Санкт-Петербурге Градостроительство РоссииДокументация Градостроительный кодекс Правила …

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.145.33.252