In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and fieldF (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
The name "symplectic group" was coined by Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex".
where MT is the transpose of M. Often Ω is defined to be
where In is the identity matrix. In this case, Sp(2n, F) can be expressed as those block matrices , where , satisfying the three equations:
Since all symplectic matrices have determinant1, the symplectic group is a subgroup of the special linear groupSL(2n, F). When n = 1, the symplectic condition on a matrix is satisfied if and only if the determinant is one, so that Sp(2, F) = SL(2, F). For n > 1, there are additional conditions, i.e. Sp(2n, F) is then a proper subgroup of SL(2n, F).
Typically, the field F is the field of real numbersR or complex numbersC. In these cases Sp(2n, F) is a real or complex Lie group of real or complex dimension n(2n + 1), respectively. These groups are connected but non-compact.
The center of Sp(2n, F) consists of the matrices I2n and −I2n as long as the characteristic of the field is not 2.[1] Since the center of Sp(2n, F) is discrete and its quotient modulo the center is a simple group, Sp(2n, F) is considered a simple Lie group.
The real rank of the corresponding Lie algebra, and hence of the Lie group Sp(2n, F), is n.
equipped with the commutator as its Lie bracket.[2] For the standard skew-symmetric bilinear form , this Lie algebra is the set of all block matrices subject to the conditions
The exponential map from the Lie algebrasp(2n, R) to the group Sp(2n, R) is not surjective. However, any element of the group can be represented as the product of two exponentials.[4] In other words,
For all S in Sp(2n, R):
The matrix D is positive-definite and diagonal. The set of such Zs forms a non-compact subgroup of Sp(2n, R) whereas U(n) forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition.[5] Further symplectic matrix properties can be found on that Wikipedia page.
A symplectic vector space is itself a symplectic manifold. A transformation under an action of the symplectic group is thus, in a sense, a linearised version of a symplectomorphism which is a more general structure preserving transformation on a symplectic manifold.
Sp(n)
The compact symplectic group[11]Sp(n) is the intersection of Sp(2n, C) with the unitary group:
It is sometimes written as USp(2n). Alternatively, Sp(n) can be described as the subgroup of GL(n, H) (invertible quaternionic matrices) that preserves the standard hermitian form on Hn:
That is, Sp(n) is just the quaternionic unitary group, U(n, H).[12] Indeed, it is sometimes called the hyperunitary group. Also Sp(1) is the group of quaternions of norm 1, equivalent to SU(2) and topologically a 3-sphereS3.
Note that Sp(n) is not a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric H-bilinear form on Hn: there is no such form except the zero form. Rather, it is isomorphic to a subgroup of Sp(2n, C), and so does preserve a complex symplectic form in a vector space of twice the dimension. As explained below, the Lie algebra of Sp(n) is the compact real form of the complex symplectic Lie algebra sp(2n, C).
The Lie algebra of Sp(2n, C) is semisimple and is denoted sp(2n, C). Its split real form is sp(2n, R) and its compact real form is sp(n). These correspond to the Lie groups Sp(2n, R) and Sp(n) respectively.
The algebras, sp(p, n − p), which are the Lie algebras of Sp(p, n − p), are the indefinite signature equivalent to the compact form.
Physical significance
Classical mechanics
The non-compact symplectic group Sp(2n, R) comes up in classical physics as the symmetries of canonical coordinates preserving the Poisson bracket.
For the special case of a Riemannian manifold, Hamilton's equations describe the geodesics on that manifold. The coordinates live on the underlying manifold, and the momenta live in the cotangent bundle. This is the reason why these are conventionally written with upper and lower indexes; it is to distinguish their locations. The corresponding Hamiltonian consists purely of the kinetic energy: it is where is the inverse of the metric tensor on the Riemannian manifold.[17][15] In fact, the cotangent bundle of any smooth manifold can be a given a symplectic structure in a canonical way, with the symplectic form defined as the exterior derivative of the tautological one-form.[18]
Consider a system of n particles whose quantum state encodes its position and momentum. These coordinates are continuous variables and hence the Hilbert space, in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the Heisenberg equation in phase space.
Hall, Brian C. (2015), Lie groups, Lie algebras, and representations: An elementary introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN978-3319134666
Rossmann, Wulf (2002), Lie Groups – An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford Science Publications, ISBN0-19-859683-9
Ferraro, Alessandro; Olivares, Stefano; Paris, Matteo G. A. (March 2005), "Gaussian states in continuous variable quantum information", arXiv:quant-ph/0503237.
Minyak Samin Hewani (ghee) Minyak samin (bahasa Arab: سمين, samiin) atau ghee (Hindi घी, Urdu گھی, Punjabi ਘੋ, Kashmiri ग्याव/گیاو - dari Sanskerta ghṛtə घृतterang) adalah mentega dari lemak hewani (sapi, kerbau, kambing, unta) yang dimurnikan (mentega swalemak). Minyak ini berasal dari kawasan timur laut Anak Benua India dan diproduksi secara luas di anak benua India, Asia Tenggara, Timur Tengah, Afrika Utara, dan Afrika Timur.[1] Dalam bahasa Hi...
Review of the state election 2022 Arizona House of Representatives elections ← 2020 November 8, 2022 2024 → All 60 seats in the Arizona House of Representatives31 seats needed for a majority Majority party Minority party Leader Russell Bowers (term-limited) Reginald Bolding (term-limited) Party Republican Democratic Leader since January 14, 2019 January 11, 2021 Leader's seat 10th[a] - Mesa 11th[b] - Phoenix Last election 31 s...
Taman Nasional KomodoIUCN Kategori II (Taman Nasional)TN KomodoTampilkan peta FloresTN KomodoTampilkan peta Nusa Tenggara TimurLetak di Pulau Flores, Nusa Tenggara TimurLetakNusa Tenggara Timur, IndonesiaKoordinat8°32′36″S 119°29′22″E / 8.54333°S 119.48944°E / -8.54333; 119.48944Koordinat: 8°32′36″S 119°29′22″E / 8.54333°S 119.48944°E / -8.54333; 119.48944Luas1,733 km²,[1]Didirikan1980Pengunjung45.000 (tahun 2010...
Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Andi Patarai Amir Anggota DPRD Kabupaten MarosMasa jabatan12 Agustus 2009 – 12 Agustus 2014PresidenSusilo Bambang YudhoyonoGubernurSyahrul Yasin LimpoMasa jabatan20 Agustus 2014 – 20 Agustus 2019PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurSyahrul Yasin LimpoSoni Sumarsono (Pj.)Nurdin AbdullahPetahanaMulai menjabat 20 Agustus 2019PresidenJok...
1971 aviation accident in Connecticut, United States Allegheny Airlines Flight 485A Convair CV-580, similar to the aircraft involved in the accidentAccidentDateJune 7, 1971[1]SummaryPilot errorSiteTweed New Haven Regional Airport, New Haven, Connecticut, United States[1] 41°14′45″N 72°53′15″W / 41.24583°N 72.88750°W / 41.24583; -72.88750AircraftAircraft typeConvair CV-580[1]OperatorAllegheny Airlines[1]RegistrationN5832&...
Minoru ChiakiMinoru Chiaki sebagai imam di dalam Rashomon (1950).Nama asal千秋 実LahirKatsuji Sasaki(1917-04-28)28 April 1917Onnenai, Nakagawa, Kamikawa, Hokkaido, JepangMeninggal1 November 1999(1999-11-01) (umur 82)Fuchu, Tokyo, JepangPekerjaanAktorTahun aktif1949 - 1999Suami/istriFumie SasakiAnakKatsuhiko Sasaki Minoru Chiaki (千秋 実code: ja is deprecated , Chiaki Minoru, 28 April 1917 – 1 November 1999) adalah aktor Jepang yang muncul dalam film seper...
Benteng Du BusTerletak di Lobo, Kaimana di IndonesiaBenteng Du Bus pada tahun 1828Koordinat3°38′40″S 133°41′43″E / 3.64444°S 133.69528°E / -3.64444; 133.69528Koordinat: 3°38′40″S 133°41′43″E / 3.64444°S 133.69528°E / -3.64444; 133.69528JenisBentengArea15 ekar (6,1 ha)Sejarah situsDibangun1828 (1828)NasibDitinggalkan 1835 (1835) Benteng Du Bus merupakan benteng pertama yang dibangun pemerintah kolonial ...
Weekly print publication on footwearFootwear NewsMay 4, 2020 issue highlighting Footwear News's 75th anniversaryEditorial DirectorMichael Atmore[1]Founded1945CompanyPenske Media CorporationCountryUSABased inNew York City (475 Fifth Ave 3rd Floor New York, NY 10017)Websitefootwearnews.com Footwear News (sometimes referred to as FN) is a weekly print publication on the topic of women's, men's, and children's footwear. Founded in 1945, its coverage is for the fashion design and fashi...
Not to be confused with Panji. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Panjin – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this message) Prefecture-level city in Liaoning, People's Republic of ChinaPanjin 盘锦市Prefecture-level cityLocation of Panjin Cit...
Dominik ParisDominik Paris a Bolzano nel 2016Nazionalità Italia Altezza183 cm Peso100 kg Sci alpino SpecialitàDiscesa libera, supergigante, combinata Squadra Carabinieri Palmarès Competizione Ori Argenti Bronzi Mondiali 1 1 0 Mondiali juniores 0 2 1 Trofeo Vittorie Coppa del Mondo - Supergigante 1 trofeo Vedi maggiori dettagliStatistiche aggiornate al 29 marzo 2024 Modifica dati su Wikidata · Manuale Dominik Paris (Merano, 14 aprile 1989) è uno sciatore alpino italiano...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jonathan Rossini Informasi pribadiNama lengkap Jonathan RossiniTanggal lahir 5 April 1989 (umur 35)Tempat lahir Giubiasco, SwissTinggi 1,85 m (6 ft 1 in)Posisi bermain BekInformasi klubKlub saat ini Bari (pinjaman dari Sassuolo)Nom...
بلاي ستيشن 2الشعارمعلومات عامةالماركة بلاي ستيشن النوع نظام ألعاب الفيديوالصانع سوني إنتراكتيف إنترتينمنت المطور سوني عائلة المنتج بلاي ستيشنالجيل الجيل السادسالسعر المبدئي 299٫99 دولار أمريكي[1] — 199٫99 دولار أمريكي[2] المبيعات 158٬700٬000 — 150٬000٬000[3] — 157٬680٬000[4&...
Euroregion formed by three different regional authorities in Austria and Italy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tyrol–South Tyrol–Trentino Euroregion – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this message) Tyrol–South Tyrol–Trenti...
Willys-Knight (Zeitschriftenwerbung von 1920) Willys-Knight war eine US-amerikanische Pkw-Marke, unter der von 1914 bis 1933 verschiedene Automobile von Willys in Toledo (Ohio) hergestellt wurden. Inhaltsverzeichnis 1 Beschreibung 2 Modelle 3 Literatur 4 Weblinks Beschreibung John North Willys kaufte 1913 die Edwards Motor Car Company auf Long Island (New York) und verlegte ihre Aktivitäten nach Elyria (Ohio), wo Willys ein Werk besaß, in dem vormals die Garford-Automobile gebaut wurden. Di...
106-й гвардейскийистребительный авиационный Висленскийорденов Кутузова и Александра Невского полк Вооружённые силы ВС СССР Вид вооружённых сил ВВС Род войск (сил) истребительная авиация Почётные наименования «Висленский» Формирование 24.08.1943 г. Расформирование (преобра...
Western popular printed image The Mice Burying the Cat, a 1760s Russian lubok hand-coloured woodcut. It probably originally dates from the reign of Peter the Great, but this impression probably dates from c. 1766. Possibly a satire on Peter's reforms, or just a representation of carnivalesque inversion, turning the world upside down. Popular prints is a term for printed images of generally low artistic quality which were sold cheaply in Europe and later the New World from the 15th to 18...