Symplectic group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

The name "symplectic group" was coined by Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex".

The metaplectic group is a double cover of the symplectic group over R; it has analogues over other local fields, finite fields, and adele rings.

Sp(2n, F)

The symplectic group is a classical group defined as the set of linear transformations of a 2n-dimensional vector space over the field F which preserve a non-degenerate skew-symmetric bilinear form. Such a vector space is called a symplectic vector space, and the symplectic group of an abstract symplectic vector space V is denoted Sp(V). Upon fixing a basis for V, the symplectic group becomes the group of 2n × 2n symplectic matrices, with entries in F, under the operation of matrix multiplication. This group is denoted either Sp(2n, F) or Sp(n, F). If the bilinear form is represented by the nonsingular skew-symmetric matrix Ω, then

where MT is the transpose of M. Often Ω is defined to be

where In is the identity matrix. In this case, Sp(2n, F) can be expressed as those block matrices , where , satisfying the three equations:

Since all symplectic matrices have determinant 1, the symplectic group is a subgroup of the special linear group SL(2n, F). When n = 1, the symplectic condition on a matrix is satisfied if and only if the determinant is one, so that Sp(2, F) = SL(2, F). For n > 1, there are additional conditions, i.e. Sp(2n, F) is then a proper subgroup of SL(2n, F).

Typically, the field F is the field of real numbers R or complex numbers C. In these cases Sp(2n, F) is a real or complex Lie group of real or complex dimension n(2n + 1), respectively. These groups are connected but non-compact.

The center of Sp(2n, F) consists of the matrices I2n and I2n as long as the characteristic of the field is not 2.[1] Since the center of Sp(2n, F) is discrete and its quotient modulo the center is a simple group, Sp(2n, F) is considered a simple Lie group.

The real rank of the corresponding Lie algebra, and hence of the Lie group Sp(2n, F), is n.

The Lie algebra of Sp(2n, F) is the set

equipped with the commutator as its Lie bracket.[2] For the standard skew-symmetric bilinear form , this Lie algebra is the set of all block matrices subject to the conditions

Sp(2n, C)

The symplectic group over the field of complex numbers is a non-compact, simply connected, simple Lie group.

Sp(2n, R)

Sp(n, C) is the complexification of the real group Sp(2n, R). Sp(2n, R) is a real, non-compact, connected, simple Lie group.[3] It has a fundamental group isomorphic to the group of integers under addition. As the real form of a simple Lie group its Lie algebra is a splittable Lie algebra.

Some further properties of Sp(2n, R):

  • The exponential map from the Lie algebra sp(2n, R) to the group Sp(2n, R) is not surjective. However, any element of the group can be represented as the product of two exponentials.[4] In other words,
  • For all S in Sp(2n, R):
The matrix D is positive-definite and diagonal. The set of such Zs forms a non-compact subgroup of Sp(2n, R) whereas U(n) forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition.[5] Further symplectic matrix properties can be found on that Wikipedia page.

Infinitesimal generators

The members of the symplectic Lie algebra sp(2n, F) are the Hamiltonian matrices.

These are matrices, such that

where B and C are symmetric matrices. See classical group for a derivation.

Example of symplectic matrices

For Sp(2, R), the group of 2 × 2 matrices with determinant 1, the three symplectic (0, 1)-matrices are:[7]

Sp(2n, R)

It turns out that can have a fairly explicit description using generators. If we let denote the symmetric matrices, then is generated by where

are subgroups of [8]pg 173[9]pg 2.

Relationship with symplectic geometry

Symplectic geometry is the study of symplectic manifolds. The tangent space at any point on a symplectic manifold is a symplectic vector space.[10] As noted earlier, structure preserving transformations of a symplectic vector space form a group and this group is Sp(2n, F), depending on the dimension of the space and the field over which it is defined.

A symplectic vector space is itself a symplectic manifold. A transformation under an action of the symplectic group is thus, in a sense, a linearised version of a symplectomorphism which is a more general structure preserving transformation on a symplectic manifold.

Sp(n)

The compact symplectic group[11] Sp(n) is the intersection of Sp(2n, C) with the unitary group:

It is sometimes written as USp(2n). Alternatively, Sp(n) can be described as the subgroup of GL(n, H) (invertible quaternionic matrices) that preserves the standard hermitian form on Hn:

That is, Sp(n) is just the quaternionic unitary group, U(n, H).[12] Indeed, it is sometimes called the hyperunitary group. Also Sp(1) is the group of quaternions of norm 1, equivalent to SU(2) and topologically a 3-sphere S3.

Note that Sp(n) is not a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric H-bilinear form on Hn: there is no such form except the zero form. Rather, it is isomorphic to a subgroup of Sp(2n, C), and so does preserve a complex symplectic form in a vector space of twice the dimension. As explained below, the Lie algebra of Sp(n) is the compact real form of the complex symplectic Lie algebra sp(2n, C).

Sp(n) is a real Lie group with (real) dimension n(2n + 1). It is compact and simply connected.[13]

The Lie algebra of Sp(n) is given by the quaternionic skew-Hermitian matrices, the set of n-by-n quaternionic matrices that satisfy

where A is the conjugate transpose of A (here one takes the quaternionic conjugate). The Lie bracket is given by the commutator.

Important subgroups

Some main subgroups are:

Conversely it is itself a subgroup of some other groups:

There are also the isomorphisms of the Lie algebras sp(2) = so(5) and sp(1) = so(3) = su(2).

Relationship between the symplectic groups

Every complex, semisimple Lie algebra has a split real form and a compact real form; the former is called a complexification of the latter two.

The Lie algebra of Sp(2n, C) is semisimple and is denoted sp(2n, C). Its split real form is sp(2n, R) and its compact real form is sp(n). These correspond to the Lie groups Sp(2n, R) and Sp(n) respectively.

The algebras, sp(p, np), which are the Lie algebras of Sp(p, np), are the indefinite signature equivalent to the compact form.

Physical significance

Classical mechanics

The non-compact symplectic group Sp(2n, R) comes up in classical physics as the symmetries of canonical coordinates preserving the Poisson bracket.

Consider a system of n particles, evolving under Hamilton's equations whose position in phase space at a given time is denoted by the vector of canonical coordinates,

The elements of the group Sp(2n, R) are, in a certain sense, canonical transformations on this vector, i.e. they preserve the form of Hamilton's equations.[14][15] If

are new canonical coordinates, then, with a dot denoting time derivative,

where

for all t and all z in phase space.[16]

For the special case of a Riemannian manifold, Hamilton's equations describe the geodesics on that manifold. The coordinates live on the underlying manifold, and the momenta live in the cotangent bundle. This is the reason why these are conventionally written with upper and lower indexes; it is to distinguish their locations. The corresponding Hamiltonian consists purely of the kinetic energy: it is where is the inverse of the metric tensor on the Riemannian manifold.[17][15] In fact, the cotangent bundle of any smooth manifold can be a given a symplectic structure in a canonical way, with the symplectic form defined as the exterior derivative of the tautological one-form.[18]

Quantum mechanics

Consider a system of n particles whose quantum state encodes its position and momentum. These coordinates are continuous variables and hence the Hilbert space, in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the Heisenberg equation in phase space.

Construct a vector of canonical coordinates,

The canonical commutation relation can be expressed simply as

where

and In is the n × n identity matrix.

Many physical situations only require quadratic Hamiltonians, i.e. Hamiltonians of the form

where K is a 2n × 2n real, symmetric matrix. This turns out to be a useful restriction and allows us to rewrite the Heisenberg equation as

The solution to this equation must preserve the canonical commutation relation. It can be shown that the time evolution of this system is equivalent to an action of the real symplectic group, Sp(2n, R), on the phase space.

See also

Notes

  1. ^ "Symplectic group", Encyclopedia of Mathematics Retrieved on 13 December 2014.
  2. ^ Hall 2015 Prop. 3.25
  3. ^ "Is the symplectic group Sp(2n, R) simple?", Stack Exchange Retrieved on 14 December 2014.
  4. ^ "Is the exponential map for Sp(2n, R) surjective?", Stack Exchange Retrieved on 5 December 2014.
  5. ^ "Standard forms and entanglement engineering of multimode Gaussian states under local operations – Serafini and Adesso", Retrieved on 30 January 2015.
  6. ^ "Symplectic Geometry – Arnol'd and Givental", Retrieved on 30 January 2015.
  7. ^ Symplectic Group, (source: Wolfram MathWorld), downloaded February 14, 2012
  8. ^ Gerald B. Folland. (2016). Harmonic analysis in phase space. Princeton: Princeton Univ Press. p. 173. ISBN 978-1-4008-8242-7. OCLC 945482850.
  9. ^ Habermann, Katharina, 1966- (2006). Introduction to symplectic Dirac operators. Springer. ISBN 978-3-540-33421-7. OCLC 262692314.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  10. ^ "Lecture Notes – Lecture 2: Symplectic reduction", Retrieved on 30 January 2015.
  11. ^ Hall 2015 Section 1.2.8
  12. ^ Hall 2015 p. 14
  13. ^ Hall 2015 Prop. 13.12
  14. ^ Arnold 1989 gives an extensive mathematical overview of classical mechanics. See chapter 8 for symplectic manifolds.
  15. ^ a b Ralph Abraham and Jerrold E. Marsden, Foundations of Mechanics, (1978) Benjamin-Cummings, London ISBN 0-8053-0102-X
  16. ^ Goldstein 1980, Section 9.3
  17. ^ Jurgen Jost, (1992) Riemannian Geometry and Geometric Analysis, Springer.
  18. ^ da Silva, Ana Cannas (2008). Lectures on Symplectic Geometry. Lecture Notes in Mathematics. Vol. 1764. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 9. doi:10.1007/978-3-540-45330-7. ISBN 978-3-540-42195-5.

References

Read other articles:

Minyak Samin Hewani (ghee) Minyak samin (bahasa Arab: سمين, samiin) atau ghee (Hindi घी, Urdu گھی, Punjabi ਘੋ, Kashmiri ग्याव/گیاو - dari Sanskerta ghṛtə घृतterang) adalah mentega dari lemak hewani (sapi, kerbau, kambing, unta) yang dimurnikan (mentega swalemak). Minyak ini berasal dari kawasan timur laut Anak Benua India dan diproduksi secara luas di anak benua India, Asia Tenggara, Timur Tengah, Afrika Utara, dan Afrika Timur.[1] Dalam bahasa Hi...

 

Review of the state election 2022 Arizona House of Representatives elections ← 2020 November 8, 2022 2024 → All 60 seats in the Arizona House of Representatives31 seats needed for a majority   Majority party Minority party   Leader Russell Bowers (term-limited) Reginald Bolding (term-limited) Party Republican Democratic Leader since January 14, 2019 January 11, 2021 Leader's seat 10th[a] - Mesa 11th[b] - Phoenix Last election 31 s...

 

Taman Nasional KomodoIUCN Kategori II (Taman Nasional)TN KomodoTampilkan peta FloresTN KomodoTampilkan peta Nusa Tenggara TimurLetak di Pulau Flores, Nusa Tenggara TimurLetakNusa Tenggara Timur, IndonesiaKoordinat8°32′36″S 119°29′22″E / 8.54333°S 119.48944°E / -8.54333; 119.48944Koordinat: 8°32′36″S 119°29′22″E / 8.54333°S 119.48944°E / -8.54333; 119.48944Luas1,733 km²,[1]Didirikan1980Pengunjung45.000 (tahun 2010...

Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Andi Patarai Amir Anggota DPRD Kabupaten MarosMasa jabatan12 Agustus 2009 – 12 Agustus 2014PresidenSusilo Bambang YudhoyonoGubernurSyahrul Yasin LimpoMasa jabatan20 Agustus 2014 – 20 Agustus 2019PresidenSusilo Bambang YudhoyonoJoko WidodoGubernurSyahrul Yasin LimpoSoni Sumarsono (Pj.)Nurdin AbdullahPetahanaMulai menjabat 20 Agustus 2019PresidenJok...

 

1971 aviation accident in Connecticut, United States Allegheny Airlines Flight 485A Convair CV-580, similar to the aircraft involved in the accidentAccidentDateJune 7, 1971[1]SummaryPilot errorSiteTweed New Haven Regional Airport, New Haven, Connecticut, United States[1] 41°14′45″N 72°53′15″W / 41.24583°N 72.88750°W / 41.24583; -72.88750AircraftAircraft typeConvair CV-580[1]OperatorAllegheny Airlines[1]RegistrationN5832&...

 

Minoru ChiakiMinoru Chiaki sebagai imam di dalam Rashomon (1950).Nama asal千秋 実LahirKatsuji Sasaki(1917-04-28)28 April 1917Onnenai, Nakagawa, Kamikawa, Hokkaido, JepangMeninggal1 November 1999(1999-11-01) (umur 82)Fuchu, Tokyo, JepangPekerjaanAktorTahun aktif1949 - 1999Suami/istriFumie SasakiAnakKatsuhiko Sasaki Minoru Chiaki (千秋 実code: ja is deprecated , Chiaki Minoru, 28 April 1917 – 1 November 1999) adalah aktor Jepang yang muncul dalam film seper...

Benteng Du BusTerletak di Lobo, Kaimana di IndonesiaBenteng Du Bus pada tahun 1828Koordinat3°38′40″S 133°41′43″E / 3.64444°S 133.69528°E / -3.64444; 133.69528Koordinat: 3°38′40″S 133°41′43″E / 3.64444°S 133.69528°E / -3.64444; 133.69528JenisBentengArea15 ekar (6,1 ha)Sejarah situsDibangun1828 (1828)NasibDitinggalkan 1835 (1835) Benteng Du Bus merupakan benteng pertama yang dibangun pemerintah kolonial ...

 

Weekly print publication on footwearFootwear NewsMay 4, 2020 issue highlighting Footwear News's 75th anniversaryEditorial DirectorMichael Atmore[1]Founded1945CompanyPenske Media CorporationCountryUSABased inNew York City (475 Fifth Ave 3rd Floor New York, NY 10017)Websitefootwearnews.com Footwear News (sometimes referred to as FN) is a weekly print publication on the topic of women's, men's, and children's footwear. Founded in 1945, its coverage is for the fashion design and fashi...

 

きしわだし 岸和田市 岸和田だんじり祭 岸和田城岸和田カンカンベイサイドモール 五風荘岸和田市立浪切ホール 岸和田市旗 岸和田市章 国 日本地方 近畿地方都道府県 大阪府市町村コード 27202-7法人番号 6000020272027 面積 72.72km2総人口 184,954人 [編集](推計人口、2024年5月1日)人口密度 2,543人/km2隣接自治体 和泉市、貝塚市、泉北郡忠岡町和歌山県:紀の川市、伊都郡�...

HLA-DRB1 بنى متوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 1A6A, 1BX2, 1YMM, 2WBJ,%%s1AQD, 1DLH, 1FYT, 1HXY, 1JWM, 1JWS, 1JWU, 1KG0, 1KLG, 1KLU, 1LO5, 1PYW, 1R5I, 1SEB, 1SJH, 1T5W, 1T5X, 2FSE, 2G9H, 2IAM, 2IAN, 2ICW, 2IPK, 2OJE, 2XN9, 3L6F, 3PDO, 3PGC, 3PGD, 3QXA, 3QXD, 3S4S, 3S5L, 4AEN, 4AH2, 4C56, 4E41, 4FQX, 4GBX, 4I5B, 4OV5, 4X5W, 4X5X,%%s1D5M, 1D5X, 1D5Z, 1D6E, 1J8H, 2SEB, 3O6F, 3T0E, ...

 

二本松少年隊群像 二本松少年隊顕彰碑 二本松少年隊(にほんまつしょうねんたい)は、幕末の二本松藩において戊辰戦争に出陣した12歳から17歳の少年兵部隊。幕府側で戦った。ただし、会津藩の白虎隊と違い当時は隊名がなく、二本松少年隊と名づけられたのは戊辰戦没者五十回忌に刊行された「二本松戊辰少年隊記」からである。 概要 戊辰戦争への出陣は14歳未満�...

 

Not to be confused with Panji. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Panjin – news · newspapers · books · scholar · JSTOR (April 2020) (Learn how and when to remove this message) Prefecture-level city in Liaoning, People's Republic of ChinaPanjin 盘锦市Prefecture-level cityLocation of Panjin Cit...

Dominik ParisDominik Paris a Bolzano nel 2016Nazionalità Italia Altezza183 cm Peso100 kg Sci alpino SpecialitàDiscesa libera, supergigante, combinata Squadra Carabinieri Palmarès Competizione Ori Argenti Bronzi Mondiali 1 1 0 Mondiali juniores 0 2 1 Trofeo Vittorie Coppa del Mondo - Supergigante 1 trofeo Vedi maggiori dettagliStatistiche aggiornate al 29 marzo 2024 Modifica dati su Wikidata · Manuale Dominik Paris (Merano, 14 aprile 1989) è uno sciatore alpino italiano...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jonathan Rossini Informasi pribadiNama lengkap Jonathan RossiniTanggal lahir 5 April 1989 (umur 35)Tempat lahir Giubiasco, SwissTinggi 1,85 m (6 ft 1 in)Posisi bermain BekInformasi klubKlub saat ini Bari (pinjaman dari Sassuolo)Nom...

 

بلاي ستيشن 2الشعارمعلومات عامةالماركة بلاي ستيشن النوع نظام ألعاب الفيديوالصانع سوني إنتراكتيف إنترتينمنت المطور سوني عائلة المنتج بلاي ستيشنالجيل الجيل السادسالسعر المبدئي 299٫99 دولار أمريكي[1] — 199٫99 دولار أمريكي[2] المبيعات 158٬700٬000 — 150٬000٬000[3] — 157٬680٬000[4&...

1788 Massachusetts gubernatorial election ← 1787 7 April 1788 1789 →   Nominee John Hancock Elbridge Gerry Party Nonpartisan Nonpartisan Popular vote 17,856 4,145 Percentage 80.53% 18.70% Governor before election John Hancock Nonpartisan Elected Governor John Hancock Nonpartisan Elections in Massachusetts General 1942 1944 1946 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2008 2010 2012 2014 2016 2018 2020...

 

Euroregion formed by three different regional authorities in Austria and Italy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tyrol–South Tyrol–Trentino Euroregion – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this message) Tyrol–South Tyrol–Trenti...

 

Willys-Knight (Zeitschriftenwerbung von 1920) Willys-Knight war eine US-amerikanische Pkw-Marke, unter der von 1914 bis 1933 verschiedene Automobile von Willys in Toledo (Ohio) hergestellt wurden. Inhaltsverzeichnis 1 Beschreibung 2 Modelle 3 Literatur 4 Weblinks Beschreibung John North Willys kaufte 1913 die Edwards Motor Car Company auf Long Island (New York) und verlegte ihre Aktivitäten nach Elyria (Ohio), wo Willys ein Werk besaß, in dem vormals die Garford-Automobile gebaut wurden. Di...

106-й гвардейскийистребительный авиационный Висленскийорденов Кутузова и Александра Невского полк Вооружённые силы ВС СССР Вид вооружённых сил ВВС Род войск (сил) истребительная авиация Почётные наименования «Висленский» Формирование 24.08.1943 г. Расформирование (преобра...

 

Western popular printed image The Mice Burying the Cat, a 1760s Russian lubok hand-coloured woodcut. It probably originally dates from the reign of Peter the Great, but this impression probably dates from c. 1766. Possibly a satire on Peter's reforms, or just a representation of carnivalesque inversion, turning the world upside down. Popular prints is a term for printed images of generally low artistic quality which were sold cheaply in Europe and later the New World from the 15th to 18...