Compact Lie algebra

In the mathematical field of Lie theory, there are two definitions of a compact Lie algebra. Extrinsically and topologically, a compact Lie algebra is the Lie algebra of a compact Lie group;[1] this definition includes tori. Intrinsically and algebraically, a compact Lie algebra is a real Lie algebra whose Killing form is negative definite; this definition is more restrictive and excludes tori.[2] A compact Lie algebra can be seen as the smallest real form of a corresponding complex Lie algebra, namely the complexification.

Definition

Formally, one may define a compact Lie algebra either as the Lie algebra of a compact Lie group, or as a real Lie algebra whose Killing form is negative definite. These definitions do not quite agree:[2]

  • The Killing form on the Lie algebra of a compact Lie group is negative semidefinite, not negative definite in general.
  • If the Killing form of a Lie algebra is negative definite, then the Lie algebra is the Lie algebra of a compact semisimple Lie group.

In general, the Lie algebra of a compact Lie group decomposes as the Lie algebra direct sum of a commutative summand (for which the corresponding subgroup is a torus) and a summand on which the Killing form is negative definite.

It is important to note that the converse of the first result above is false: Even if the Killing form of a Lie algebra is negative semidefinite, this does not mean that the Lie algebra is the Lie algebra of some compact group. For example, the Killing form on the Lie algebra of the Heisenberg group is identically zero, hence negative semidefinite, but this Lie algebra is not the Lie algebra of any compact group.

Properties

  • Compact Lie algebras are reductive;[3] note that the analogous result is true for compact groups in general.
  • The Lie algebra for the compact Lie group G admits an Ad(G)-invariant inner product,.[4] Conversely, if admits an Ad-invariant inner product, then is the Lie algebra of some compact group.[5] If is semisimple, this inner product can be taken to be the negative of the Killing form. Thus relative to this inner product, Ad(G) acts by orthogonal transformations () and acts by skew-symmetric matrices ().[4] It is possible to develop the theory of complex semisimple Lie algebras by viewing them as the complexifications of Lie algebras of compact groups;[6] the existence of an Ad-invariant inner product on the compact real form greatly simplifies the development.
    This can be seen as a compact analog of Ado's theorem on the representability of Lie algebras: just as every finite-dimensional Lie algebra in characteristic 0 embeds in every compact Lie algebra embeds in
  • The Satake diagram of a compact Lie algebra is the Dynkin diagram of the complex Lie algebra with all vertices blackened.
  • Compact Lie algebras are opposite to split real Lie algebras among real forms, split Lie algebras being "as far as possible" from being compact.

Classification

The compact Lie algebras are classified and named according to the compact real forms of the complex semisimple Lie algebras. These are:

Isomorphisms

The exceptional isomorphisms of connected Dynkin diagrams yield exceptional isomorphisms of compact Lie algebras and corresponding Lie groups.

The classification is non-redundant if one takes for for for and for If one instead takes or one obtains certain exceptional isomorphisms.

For is the trivial diagram, corresponding to the trivial group

For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphisms of Lie groups (the 3-sphere or unit quaternions).

For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphism of Lie groups

For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphism of Lie groups

If one considers and as diagrams, these are isomorphic to and respectively, with corresponding isomorphisms of Lie algebras.

See also

Notes

  1. ^ (Knapp 2002, Section 4, pp. 248–251)
  2. ^ a b (Knapp 2002, Propositions 4.26, 4.27, pp. 249–250)
  3. ^ (Knapp 2002, Proposition 4.25, pp. 249)
  4. ^ a b (Knapp 2002, Proposition 4.24, pp. 249)
  5. ^ SpringerLink
  6. ^ Hall 2015 Chapter 7

References

  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-0-387-40122-5.
  • Knapp, Anthony W. (2002), Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140 (2nd ed.), Boston: Birkhäuser, ISBN 0-8176-4259-5.

Read other articles:

2018 Kathryn Sikkink (lahir 1955[1]) adalah penulis, akademisi hak asasi manusia, dan ilmuwan hubungan internasional yang melakukan penelitian dengan pendekatan teori konstruktivisme. Ia mendapat gelar B.A. di bidang hubungan internasional dari Universitas Mineesota dan M.A. dan PhD di bidang ilmu politik dari Universitas Columbia. Sikkink sebelumnya menjabat sebagai Dosen Tertinggi dan Ketua Presidensial Ilmu Politik McKnight di Universitas Minnesota,[2] lalu menjabat Dosen K...

 

 

Provincia Mauretania CaesariensisProvinsi di Imperium Romawi42 M–Abad ketujuhProvinsi Mauretania Caesariensis di Kekaisaran Romawi sekitar tahun 125Ibu kotaCaesareaSejarahEra sejarahZaman Kuno• Pembentukan provinsi 42 M• Ditaklukan Muslim Abad ketujuh Didahului oleh Digantikan oleh Afrika (provinsi Romawi) klfKekhalifahan Umayyah Sekarang bagian dari Aljazair Mauretania Caesariensis adalah sebuah provinsi Romawi yang terletak di wilayah Aljazair modern. Nama lengkap provi...

 

 

Sebuah tungku induksi atau tanur induksi adalah tungku listrik di mana panas diterapkan dengan pemanasan induksi logam. Keuntungan dari tungku induksi adalah, proses peleburan hemat energi dan baik-dikendalikan bersih dibandingkan dengan kebanyakan cara lain peleburan logam. Deskripsi 1 - Melt 2 - water-cooled coil 3 - yokes 4 - crucible Secara umum tanur induksi digolongkan sebagai tanur peleburan (melting furnace) dengan frekuensi kerja jala-jala (50 Hz) sampai frekuensi tinggi (10000&...

Group of Swedish sports TV channels The name of this television channel uses a disambiguation style that does not follow WP:NCTV or WP:NCBC and needs attention. If you are removing this template without fixing the naming style to one supported by WP:NCTV, please add the article to Category:Television articles with disputed naming style. Television channel V SportCountrySwedenBroadcast areaSwedenFinlandHeadquartersLondon, United KingdomProgrammingPicture format576i (16:9 SDTV)1080i (HDTV)Owner...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) جامعة محمد البشير الابراهيمي برج بوعريريج الشعار وخذو الافكار منا وابعثو منها الجزائر معلومات التأسيس س...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Società Sportiva Dilettantistica Calcio Città di Brindisi. Polisportiva Brindisi SportStagione 1942-1943Sport calcio Squadra Brindisi Allenatore Alfredo De Vivi Serie C7º posto nel girone M. 1941-1942 1945-1946 Si invita a seguire il modello di voce Questa voc...

Indian cricketer (born 1982) Mithali RajMithali in 2018Personal informationFull nameMithali Dorai RajBorn (1982-12-03) 3 December 1982 (age 41)[1]Jodhpur, Rajasthan, IndiaHeight5 ft 4 in (1.63 m)BattingRight-handedBowlingRight-arm leg breakRoleTop-order batterInternational information National sideIndia (1999–2022)Test debut (cap 56)14 January 2002 v EnglandLast Test30 September 2021 v AustraliaODI debut (cap 56)26 June ...

 

 

Human settlement in EnglandTelscombeTelscombeLocation within East SussexArea4.7 km2 (1.8 sq mi) [1]Population7,477 (2011)[2]• Density3,868/sq mi (1,493/km2)OS grid referenceTQ403022• London48 miles (77 km) NDistrictLewesShire countyEast SussexRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townPEACEHAVENPostcode districtBN10Post townBRIGHTONPostcode districtBN2Post townLEW...

 

 

2008 studio album by DJ KhaledWe GlobalStudio album by DJ KhaledReleasedSeptember 16, 2008 (2008-09-16)RecordedNovember 2007 – June 2008StudioTerror Squad Studios, The Bronx, New York City, New York, U.S., We the Best Studios North Miami, FloridaGenreHip hopLength63:58Label We the Best Terror Squad Koch Producer DJ Khaled The Runners Timbaland The Inkredibles Isaac Opus DJ Nasty & LVM Danja Gold Ru$h Lu Diaz Cool & Dre DJ Khaled chronology We the Best(2007) W...

Puffin Role Fighter reconnaissance aircraftType of aircraft National origin United Kingdom Manufacturer George Parnall and Company Designer Harold Bolas First flight 19 November 1920 Number built 3 The Parnall Puffin was an experimental amphibious fighter-reconnaissance biplane produced in the United Kingdom just after World War I.[1] It had several unusual features, principally a single central float and an inverted vertical stabilizer and rudder, and showed promise, but at that tim...

 

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Language family BantoidGeographicdistributionSub-Saharan Africa, but not farther west than NigeriaLinguistic classificationNiger–Congo?Atlantic–CongoVolta–CongoBenue–CongoBantoidProto-languageProto-Bantoid[1][2]Subdivisions Northern Bantoid Southern Bantoid Glottologbant1294The Bantoid languages shown within the Niger–Congo language family. Non-Bantoid languages are greyscale. Bantoid is a major branch of the Benue–Congo language family. It consists of the Northern...

 

 

Soviet space station in orbit from April to October 1971 Salyut 1 (DOS-1)Salyut 1 as seen from the departing Soyuz 11Station statisticsCOSPAR ID1971-032ASATCAT no.05160Call signSalyut 1Crew3LaunchApril 19, 1971, 01:40:00 (1971-04-19UTC01:40) UTC[1]Carrier rocketProton-KLaunch padSite 81/24, Baikonur Cosmodrome, Soviet UnionReentryOctober 11, 1971 (1971-10-12)Mission statusDe-orbitedMass18,425 kg (40,620 lb)Length~20 m (66 ft)Diameter~4 m (13...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Playing Cards film – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this message) 1896 French filmPlaying CardsDirected byGeorges MélièsRelease date 1896 (1896) Running time67 secondsCountryFranceLanguageSilent...

Cinema of theUnited Kingdom List of British films British horror 1888–1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995...

 

 

Australian conglomerate Metcash LimitedCompany typePublicTraded asASX: MTSIndustryFood distributorhardware retailliquor retailingconsumer goodsFounded1927; 97 years ago (1927) as Davids Limited, Woolloomooloo, NSW, Australia.FounderJoe DavidKey peopleDoug Jones (CEO)ProductsSupermarket FMCGconvenience storeshardware productsliquor storesWebsitewww.metcash.com Metcash Limited is an Australian wholesaler and conglomerate company that distributes food, liquor and hardware....

 

 

American actor and comedian (1884–1944) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Harry Langdon – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this message) Harry LangdonLangdon in 1924BornHenry Philmore Langdon(1884-06-15)June 15, 1884Council Bluffs, Iowa...

Royal Coat of Arms of the United Kingdom (Government in Scotland) Parliament House in Edinburgh Der Court of Session (schottisch-gälisch Cùirt an t-Seisein, Scots Coort o Session) ist das höchste Zivilgericht Schottlands und Teil des College of Justice. Der Sitz des Court of Session befindet sich im Parliament House in Edinburgh. Das Gericht ist sowohl eine Tatsacheninstanz als auch ein Berufungsgericht. Richter am Court of Session werden als Lords of Session bezeichnet. Das oberste Strafg...

 

 

2007 2017 Élections législatives de 2012 dans les Ardennes 3 sièges de députés à l'Assemblée nationale 10 et 17 juin 2012 Corps électoral et résultats Inscrits au 1er tour 196 609 Votants au 1er tour 112 813   57,38 %  1,4 Votes exprimés au 1er tour 111 390 Inscrits au 2d tour 138 367 Votants au 2d tour 77 765   56,2 % Votes exprimés au 2d tour 75 465 Union de la droite et du centre Liste Union pour un mouvement popul...