Share to: share facebook share twitter share wa share telegram print page

Solenoid (mathematics)

This page discusses a class of topological groups. For the wrapped loop of wire, see Solenoid.
The Smale-Williams solenoid.

In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms

where each is a circle and fi is the map that uniformly wraps the circle for times () around the circle .[1]: Ch. 2 Def. (10.12)  This construction can be carried out geometrically in the three-dimensional Euclidean space R3. A solenoid is a one-dimensional homogeneous indecomposable continuum that has the structure of an abelian compact topological group.

Solenoids were first introduced by Vietoris for the case,[2] and by van Dantzig the case, where is fixed.[3] Such a solenoid arises as a one-dimensional expanding attractor, or Smale–Williams attractor, and forms an important example in the theory of hyperbolic dynamical systems.

Construction

Geometric construction and the Smale–Williams attractor

A solid torus wrapped twice around inside another solid torus in R3
The first six steps in the construction of the Smale-Williams attractor.

Each solenoid may be constructed as the intersection of a nested system of embedded solid tori in R3.

Fix a sequence of natural numbers {ni}, ni ≥ 2. Let T0 = S1 × D be a solid torus. For each i ≥ 0, choose a solid torus Ti+1 that is wrapped longitudinally ni times inside the solid torus Ti. Then their intersection

is homeomorphic to the solenoid constructed as the inverse limit of the system of circles with the maps determined by the sequence {ni}.

Here is a variant of this construction isolated by Stephen Smale as an example of an expanding attractor in the theory of smooth dynamical systems. Denote the angular coordinate on the circle S1 by t (it is defined mod 2π) and consider the complex coordinate z on the two-dimensional unit disk D. Let f be the map of the solid torus T = S1 × D into itself given by the explicit formula

This map is a smooth embedding of T into itself that preserves the foliation by meridional disks (the constants 1/2 and 1/4 are somewhat arbitrary, but it is essential that 1/4 < 1/2 and 1/4 + 1/2 < 1). If T is imagined as a rubber tube, the map f stretches it in the longitudinal direction, contracts each meridional disk, and wraps the deformed tube twice inside T with twisting, but without self-intersections. The hyperbolic set Λ of the discrete dynamical system (T, f) is the intersection of the sequence of nested solid tori described above, where Ti is the image of T under the ith iteration of the map f. This set is a one-dimensional (in the sense of topological dimension) attractor, and the dynamics of f on Λ has the following interesting properties:

General theory of solenoids and expanding attractors, not necessarily one-dimensional, was developed by R. F. Williams and involves a projective system of infinitely many copies of a compact branched manifold in place of the circle, together with an expanding self-immersion.

Construction in toroidal coordinates

In the toroidal coordinates with radius , the solenoid can be parametrized by aswhere

Here, are adjustable shape-parameters, with constraint . In particular, works.

Let be the solenoid constructed this way, then the topology of the solenoid is just the subset topology induced by the Euclidean topology on .

Since the parametrization is bijective, we can pullback the topology on to , which makes itself the solenoid. This allows us to construct the inverse limit maps explicitly:

Construction by symbolic dynamics

Viewed as a set, the solenoid is just a Cantor-continuum of circles, wired together in a particular way. This suggests to us the construction by symbolic dynamics, where we start with a circle as a "racetrack", and append an "odometer" to keep track of which circle we are on.

Define as the solenoid. Next, define addition on the odometer , in the same way as p-adic numbers. Next, define addition on the solenoid byThe topology on the solenoid is generated by the basis containing the subsets , where is any open interval in , and is the set of all elements of starting with the initial segment .

Pathological properties

Solenoids are compact metrizable spaces that are connected, but not locally connected or path connected. This is reflected in their pathological behavior with respect to various homology theories, in contrast with the standard properties of homology for simplicial complexes. In Čech homology, one can construct a non-exact long homology sequence using a solenoid. In Steenrod-style homology theories,[4] the 0th homology group of a solenoid may have a fairly complicated structure, even though a solenoid is a connected space.

See also

References

  1. ^ Hewitt, Edwin; Ross, Kenneth A. (1979). Abstract Harmonic Analysis I: Structure of Topological Groups Integration Theory Group Representations. Grundlehren der Mathematischen Wissenschaften. Vol. 115. Berlin-New York: Springer. doi:10.1007/978-1-4419-8638-2. ISBN 978-0-387-94190-5.
  2. ^ Vietoris, L. (December 1927). "Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen". Mathematische Annalen. 97 (1): 454–472. doi:10.1007/bf01447877. ISSN 0025-5831. S2CID 121172198.
  3. ^ van Dantzig, D. (1930). "Ueber topologisch homogene Kontinua". Fundamenta Mathematicae. 15: 102–125. doi:10.4064/fm-15-1-102-125. ISSN 0016-2736.
  4. ^ "Steenrod-Sitnikov homology - Encyclopedia of Mathematics".

Further reading

Read other articles:

Corbières Corbières comuna de Suiza Escudo CorbièresLocalización de Corbières en SuizaPaís  Suiza• Cantón  Cantón de Friburgo• Distrito GruyèreUbicación 46°40′00″N 7°06′00″E / 46.666666666667, 7.1• Altitud 714 mSuperficie 9,60 km²Población[1]​ 839 hab. (2015)• Densidad 87 hab./km²Lengua FrancésCódigo postal 1647Sitio web Sitio web oficial[editar datos en Wikidata] Corbières (…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Balai Peringatan Sun Yat-sen – berita · surat kabar · buku · cendekiawan · JSTOR Balai Peringatan Sun Yat-sen Balai Peringatan Dr. Sun Yat-sen (Hanzi: 國父紀念館, bahasa Inggris: National Dr. Sun Yat-s…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2019) NGC 3088B الكوكبة الأسد[1]  رمز الفهرس MCG+04-24-011 (فهرس المجرات الموروفولوجي)2MASX J10010966+2224090 (Two Micron All Sky Survey, Extended source catalogue)NGC 3088B (الفهرس العام الجديد)IRAS 09583+2238 (IRAS)AGC …

Ірландські повстанські пісні — різновид жанру ірландської фольклорної музики, при виконанні яких використовуються традиційні ірландські музичні інструменти а тексти переважно пов'язані з ірландським республіканізмом і націоналізмом. Зміст 1 Історія 2 Сучасна музика…

7632 Станіслав ВідкриттяВідкривач Карачкіна Людмила ГеоргіївнаМісце відкриття КрАОДата відкриття 20 жовтня 1982ПозначенняНазвана на честь Тельнюк Станіслав ВолодимировичТимчасові позначення 1982 UT5 1972 TC1 1984 FPКатегорія малої планети Астероїд головного поясуОрбітальні харак

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2020) شبكة نقل الكهرباء الفرنسيةالشعارمعلومات عامةالاختصار RTE (بالفرنسية)[1] الجنسية فرنسا[1] التأسيس 2000 النوع عمل تجاري — مقاولة الشكل القانوني SA à directoire (s.a…

Норвезьке товариство охорони природи Оригінальна назва бук. Norges NaturvernforbundДата заснування 1914Тип Громадська організаціяГолова Truls GulowsendКількість членів 35 000[1]Адреса ОслоДжерела фінансування членські внески, пожертви, грантиОфіційний сайт www.naturvernforbundet.no Норвезьке то…

ロイヤル・リヴァプール・フィルハーモニー管弦楽団Royal Liverpool Philharmonic Orchestra 本拠地のフィルハーモニー・ホール基本情報出身地 イギリス・イングランド、リヴァプールジャンル クラシック音楽活動期間 1840年 -公式サイト www.liverpoolphil.comメンバー 首席指揮者ヴァシリー・ペトレンコ桂冠指揮者リボール・ペシェク ポータル クラシック音楽 ロイヤル・リヴァプ

La consagración de una iglesia o dedicación de una iglesia (del latín dedicatio: 'dedicación, consagración', obsoleto también: consecratio: 'santificación'; del griego καθιέρωσις: kathiérōsis, 'consagración, inauguración' o ἐγκαίνια: enkaínia, 'fiesta de la renovación') es el acto de consagrar o santificar solemnemente una iglesia, por el que se entrega el espacio interior a la congregación para su uso litúrgico.[1]​ . Cuando se consagra una catedral, tamb…

الشناكلة بن الوالي تقسيم إداري البلد المغرب  الجهة مراكش آسفي الإقليم مراكش الدائرة البور الجماعة القروية أولاد دليم المشيخة أولاد ادليم اجبيل السكان التعداد السكاني 90 نسمة (إحصاء 2004)   • عدد الأسر 9 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]،  وت ع م+01:00 (توقيت

Leonardo Da Vinci, kapal selam Italia paling sukses selama Perang Dunia II Tentang kelas Operator:* Regia Marina  Kriegsmarine  Angkatan Laut Kekaisaran JepangBertugas:1940–1945Selesai:6Hilang:6 Ciri-ciri umum Jenis Kapal selamBerat benaman 1.195 ton panjang (1.214 t) (permukaan) 1.490 ton panjang (1.510 t) (menyelam)Panjang 76,5 m (251 ft 0 in)Lebar 6,81 m (22 ft 4 in)Daya muat 4,72 m (15 ft 6 in)Pendorong Diesel-electric; …

IxkunLapangan utara dengan Prasasti 1 dan 2Lokasi di Guatemala modernLokasiDoloresWilayahDepartemen Petén,  GuatemalaKoordinat16°34′25″N 89°24′40″W / 16.57361°N 89.41111°W / 16.57361; -89.41111SejarahPeriodeKlasik AkhirBudayaPeradaban MayaCatatan situsArkeologJuan Pedro Laporte Atlas Arqueológico de Guatemala Ixkun (Ixcún atau Ixkún dalam ortografi Spanyol) adalah sebuah situs arkeologi Maya pra-Kolumbus, yang terletak di wilayah Cekungan Petén, sela…

American television talk show My Next Guest Needs No Introduction with David LettermanGenreTalk showDirected by Michael Bonfiglio Mark A. Ritchie Michael Steed Presented byDavid LettermanComposerPaul ShafferCountry of originUnited StatesOriginal languageEnglishNo. of seasons4No. of episodes25ProductionExecutive producers Justin Wilkes Dave Sirulnick Jon Kamen Tom Keaney Mark A. Ritchie Chris Cechin-De La Rosa Christopher Collins Lydia Tenaglia Mary Barclay Sandra Zweig Alexandra Lowry Tony Herna…

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Julho de 2020) Yokaichiba (八日市場市; -shi) foi uma cidade japonesa localizada na província de Chiba. Recebeu o estatuto de cidade a 1 de Julho de 1954. Foi extinta em 23 de Janeiro de 2006 quando se fundiu com a vila de Nosaka do distrito de Sosa para form…

Ali Bongo OndimbaPresiden Gabon ke-6Masa jabatan16 Oktober 2009 – 30 Agustus 2023Perdana MenteriPaul Biyoghé MbaRaymond Ndong SimaDaniel Ona OndoEmmanuel Issoze-NgondetPendahuluRose Francine Rogombé (Penjabat)PenggantiBrice Oligui (Penjabat) Informasi pribadiLahir9 Februari 1959 (umur 64)Brazzaville, Persekutuan Afrika Prancis Khatulistiwa (sekarang Kongo-Brazzaville)Partai politikPDGSuami/istriSylvia ValentinAlma materUniversitas Pantheon-SorbonneSunting kotak info • L&…

This article is about the Saint of Constantinople. For other uses, see Saint Laura (disambiguation). Saint Laura of ConstantinopleBorn1400Constantinople, Byzantine Empire(modern-day İstanbul, Turkey)Died29 May 1453Venerated inCatholic ChurchFeast29 May Saint Laura of Constantinople (died 1453) was a Christian who lived in Constantinople during the 15th century. She was born in Greece into a noble family: her father was a Latin knight named Michael and her mother was Albanian. Her name was …

Dolní Hbity Dolní Hbity (Tschechien) Basisdaten Staat: Tschechien Tschechien Region: Středočeský kraj Bezirk: Příbram Fläche: 2568,5891[1] ha Geographische Lage: 49° 39′ N, 14° 10′ O49.65694444444414.169166666667399Koordinaten: 49° 39′ 25″ N, 14° 10′ 9″ O Höhe: 399 m n.m. Einwohner: 912 (1. Jan. 2023)[2] Postleitzahl: 262 62 – 262 63 Kfz-Kennzeichen: S Verkehr Straße: Višňová – Solen…

Світлана КуценкоДата народження 14 квітня 1940(1940-04-14)Місце народження Київ, Українська РСР, СРСРДата смерті 9 січня 2017(2017-01-09) (76 років)Місце смерті Київ, УкраїнаГромадянство  СРСР→ УкраїнаНаціональність українкаAlma mater ННІ журналістики КНУ ім. Т. ШевченкаПрофесія редакт…

Extinct genus of carnivores ProcynodictisTemporal range: 50.5–39.7 Ma PreꞒ Ꞓ O S D C P T J K Pg N early to middle Eocene lower jaw of Procynodictis vulpiceps Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Clade: Pan-Carnivora Clade: Carnivoramorpha Clade: Carnivoraformes Genus: †ProcynodictisWortman & Matthew, 1899 Type species †Procynodictis vulpicepsWortman & Matthew, 1899 Species †P. progressus (Stock, 1935)[1] …

A Trick of the Tail Genesis Veröffentlichung 20. Februar 1976 Länge 4:35 Genre(s) Progressive Rock Autor(en) Tony Banks Label Charisma Records Album A Trick of the Tail Genesis 1977 A Trick of the Tail ist ein Song von Genesis aus dem gleichnamigen Album von 1976. Es wurde von Tony Banks geschrieben. Inhaltsverzeichnis 1 Hintergrund 2 Musikvideo 3 Besetzung 4 Einzelnachweise Hintergrund Der Song wurde als Single mit Ripples als B-Seite veröffentlicht, hatte aber keinen Erfolg. Der Großteil d…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.147.77.250