This article needs attention from an expert in physics. The specific problem is: The article is nonsensical and does not define the notion of KMS state which it is supposed to cover.. See the talk page for details.WikiProject Physics may be able to help recruit an expert.(January 2022)
In the statistical mechanics of quantum mechanical systems and quantum field theory, the properties of a system in thermal equilibrium can be described by a mathematical object called a Kubo–Martin–Schwinger (KMS) state: a state satisfying the KMS condition.
is the partition function. We assume that N commutes with H, or in other words, that particle number is conserved.
In the Heisenberg picture, the density matrix does not change with time, but the operators are time-dependent. In particular, translating an operator A by τ into the future gives the operator
A bit of algebraic manipulation shows that the expected values
for any two operators A and B and any real τ (we are working with finite-dimensional Hilbert spaces after all). We used the fact that the density matrix commutes with any function of (H − μN) and that the trace is cyclic.
As hinted at earlier, with infinite dimensional Hilbert spaces, we run into a lot of problems like phase transitions, spontaneous symmetry breaking, operators that are not trace class, divergent partition functions, etc..
The complex functions of z, converges in the complex strip whereas converges in the complex strip if we make certain technical assumptions like the spectrum of H − μN is bounded from below and its density does not increase exponentially (see Hagedorn temperature). If the functions converge, then they have to be analytic within the strip they are defined over as their derivatives,
and
exist.
However, we can still define a KMS state as any state satisfying
with and being analytic functions of z within their domain strips.
and are the boundary distribution values of the analytic functions in question.
This gives the right large volume, large particle number thermodynamic limit. If there is a phase transition or spontaneous symmetry breaking, the KMS state is not unique.