In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory variables or features). The most common form of regression analysis is linear regression, in which one finds the line (or a more complex linear combination) that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line (or hyperplane) that minimizes the sum of squared differences between the true data and that line (or hyperplane). For specific mathematical reasons (see linear regression), this allows the researcher to estimate the conditional expectation (or population average value) of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters (e.g., quantile regression or Necessary Condition Analysis[1]) or estimate the conditional expectation across a broader collection of non-linear models (e.g., nonparametric regression).
Regression analysis is primarily used for two conceptually distinct purposes. First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal relationships between a dependent variable and a collection of independent variables in a fixed dataset. To use regressions for prediction or to infer causal relationships, respectively, a researcher must carefully justify why existing relationships have predictive power for a new context or why a relationship between two variables has a causal interpretation. The latter is especially important when researchers hope to estimate causal relationships using observational data.[2][3]
History
The earliest form of regression was the method of least squares, which was published by Legendre in 1805,[4] and by Gauss in 1809.[5] Legendre and Gauss both applied the method to the problem of determining, from astronomical observations, the orbits of bodies about the Sun (mostly comets, but also later the then newly discovered minor planets). Gauss published a further development of the theory of least squares in 1821,[6] including a version of the Gauss–Markov theorem.
The term "regression" was coined by Francis Galton in the 19th century to describe a biological phenomenon. The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal average (a phenomenon also known as regression toward the mean).[7][8]
For Galton, regression had only this biological meaning,[9][10] but his work was later extended by Udny Yule and Karl Pearson to a more general statistical context.[11][12] In the work of Yule and Pearson, the joint distribution of the response and explanatory variables is assumed to be Gaussian. This assumption was weakened by R.A. Fisher in his works of 1922 and 1925.[13][14][15] Fisher assumed that the conditional distribution of the response variable is Gaussian, but the joint distribution need not be. In this respect, Fisher's assumption is closer to Gauss's formulation of 1821.
In the 1950s and 1960s, economists used electromechanical desk calculators to calculate regressions. Before 1970, it sometimes took up to 24 hours to receive the result from one regression.[16]
Regression methods continue to be an area of active research. In recent decades, new methods have been developed for robust regression, regression involving correlated responses such as time series and growth curves, regression in which the predictor (independent variable) or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of missing data, nonparametric regression, Bayesian methods for regression, regression in which the predictor variables are measured with error, regression with more predictor variables than observations, and causal inference with regression. Modern regression analysis is typically done with statistical and spreadsheet software packages on computers as well as on handheld scientific and graphing calculators.
Regression model
In practice, researchers first select a model they would like to estimate and then use their chosen method (e.g., ordinary least squares) to estimate the parameters of that model. Regression models involve the following components:
The unknown parameters, often denoted as a scalar or vector.
The independent variables, which are observed in data and are often denoted as a vector (where denotes a row of data).
The dependent variable, which are observed in data and often denoted using the scalar .
The error terms, which are not directly observed in data and are often denoted using the scalar .
Most regression models propose that is a function (regression function) of and , with representing an additive error term that may stand in for un-modeled determinants of or random statistical noise:
Note that the independent variables are assumed to be free of error. This important assumption is often overlooked, although errors-in-variables models can be used when the independent variables are assumed to contain errors.
The researchers' goal is to estimate the function that most closely fits the data. To carry out regression analysis, the form of the function must be specified. Sometimes the form of this function is based on knowledge about the relationship between and that does not rely on the data. If no such knowledge is available, a flexible or convenient form for is chosen. For example, a simple univariate regression may propose , suggesting that the researcher believes to be a reasonable approximation for the statistical process generating the data.
Once researchers determine their preferred statistical model, different forms of regression analysis provide tools to estimate the parameters . For example, least squares (including its most common variant, ordinary least squares) finds the value of that minimizes the sum of squared errors . A given regression method will ultimately provide an estimate of , usually denoted to distinguish the estimate from the true (unknown) parameter value that generated the data. Using this estimate, the researcher can then use the fitted value for prediction or to assess the accuracy of the model in explaining the data. Whether the researcher is intrinsically interested in the estimate or the predicted value will depend on context and their goals. As described in ordinary least squares, least squares is widely used because the estimated function approximates the conditional expectation.[5] However, alternative variants (e.g., least absolute deviations or quantile regression) are useful when researchers want to model other functions .
It is important to note that there must be sufficient data to estimate a regression model. For example, suppose that a researcher has access to rows of data with one dependent and two independent variables: . Suppose further that the researcher wants to estimate a bivariate linear model via least squares: . If the researcher only has access to data points, then they could find infinitely many combinations that explain the data equally well: any combination can be chosen that satisfies , all of which lead to and are therefore valid solutions that minimize the sum of squared residuals. To understand why there are infinitely many options, note that the system of equations is to be solved for 3 unknowns, which makes the system underdetermined. Alternatively, one can visualize infinitely many 3-dimensional planes that go through fixed points.
More generally, to estimate a least squares model with distinct parameters, one must have distinct data points. If , then there does not generally exist a set of parameters that will perfectly fit the data. The quantity appears often in regression analysis, and is referred to as the degrees of freedom in the model. Moreover, to estimate a least squares model, the independent variables must be linearly independent: one must not be able to reconstruct any of the independent variables by adding and multiplying the remaining independent variables. As discussed in ordinary least squares, this condition ensures that is an invertible matrix and therefore that a unique solution exists.
By itself, a regression is simply a calculation using the data. In order to interpret the output of regression as a meaningful statistical quantity that measures real-world relationships, researchers often rely on a number of classical assumptions. These assumptions often include:
The sample is representative of the population at large.
The independent variables are measured with no error.
Deviations from the model have an expected value of zero, conditional on covariates:
The variance of the residuals is constant across observations (homoscedasticity).
A handful of conditions are sufficient for the least-squares estimator to possess desirable properties: in particular, the Gauss–Markov assumptions imply that the parameter estimates will be unbiased, consistent, and efficient in the class of linear unbiased estimators. Practitioners have developed a variety of methods to maintain some or all of these desirable properties in real-world settings, because these classical assumptions are unlikely to hold exactly. For example, modeling errors-in-variables can lead to reasonable estimates independent variables are measured with errors. Heteroscedasticity-consistent standard errors allow the variance of to change across values of . Correlated errors that exist within subsets of the data or follow specific patterns can be handled using clustered standard errors, geographic weighted regression, or Newey–West standard errors, among other techniques. When rows of data correspond to locations in space, the choice of how to model within geographic units can have important consequences.[17][18] The subfield of econometrics is largely focused on developing techniques that allow researchers to make reasonable real-world conclusions in real-world settings, where classical assumptions do not hold exactly.
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling data points there is one independent variable: , and two parameters, and :
straight line:
In multiple linear regression, there are several independent variables or functions of independent variables.
Adding a term in to the preceding regression gives:
parabola:
This is still linear regression; although the expression on the right hand side is quadratic in the independent variable , it is linear in the parameters , and
In both cases, is an error term and the subscript indexes a particular observation.
Returning our attention to the straight line case: Given a random sample from the population, we estimate the population parameters and obtain the sample linear regression model:
The residual, , is the difference between the value of the dependent variable predicted by the model, , and the true value of the dependent variable, . One method of estimation is ordinary least squares. This method obtains parameter estimates that minimize the sum of squared residuals, SSR:
Minimization of this function results in a set of normal equations, a set of simultaneous linear equations in the parameters, which are solved to yield the parameter estimators, .
In the case of simple regression, the formulas for the least squares estimates are
where is the mean (average) of the values and is the mean of the values.
Under the assumption that the population error term has a constant variance, the estimate of that variance is given by:
This is called the mean square error (MSE) of the regression. The denominator is the sample size reduced by the number of model parameters estimated from the same data, for regressors or if an intercept is used.[19] In this case, so the denominator is .
Under the further assumption that the population error term is normally distributed, the researcher can use these estimated standard errors to create confidence intervals and conduct hypothesis tests about the population parameters.
In the more general multiple regression model, there are independent variables:
where is the -th observation on the -th independent variable.
If the first independent variable takes the value 1 for all , , then is called the regression intercept.
The least squares parameter estimates are obtained from normal equations. The residual can be written as
The normal equations are
In matrix notation, the normal equations are written as
where the element of is , the element of the column vector is , and the element of is . Thus is , is , and is . The solution is
Once a regression model has been constructed, it may be important to confirm the goodness of fit of the model and the statistical significance of the estimated parameters. Commonly used checks of goodness of fit include the R-squared, analyses of the pattern of residuals and hypothesis testing. Statistical significance can be checked by an F-test of the overall fit, followed by t-tests of individual parameters.
Interpretations of these diagnostic tests rest heavily on the model's assumptions. Although examination of the residuals can be used to invalidate a model, the results of a t-test or F-test are sometimes more difficult to interpret if the model's assumptions are violated. For example, if the error term does not have a normal distribution, in small samples the estimated parameters will not follow normal distributions and complicate inference. With relatively large samples, however, a central limit theorem can be invoked such that hypothesis testing may proceed using asymptotic approximations.
The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model. The multivariate probit model is a standard method of estimating a joint relationship between several binary dependent variables and some independent variables. For categorical variables with more than two values there is the multinomial logit. For ordinal variables with more than two values, there are the ordered logit and ordered probit models. Censored regression models may be used when the dependent variable is only sometimes observed, and Heckman correction type models may be used when the sample is not randomly selected from the population of interest. An alternative to such procedures is linear regression based on polychoric correlation (or polyserial correlations) between the categorical variables. Such procedures differ in the assumptions made about the distribution of the variables in the population. If the variable is positive with low values and represents the repetition of the occurrence of an event, then count models like the Poisson regression or the negative binomial model may be used.
When the model function is not linear in the parameters, the sum of squares must be minimized by an iterative procedure. This introduces many complications which are summarized in Differences between linear and non-linear least squares.
Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions. The further the extrapolation goes outside the data, the more room there is for the model to fail due to differences between the assumptions and the sample data or the true values.
A prediction interval that represents the uncertainty may accompany the point prediction. Such intervals tend to expand rapidly as the values of the independent variable(s) moved outside the range covered by the observed data.
For such reasons and others, some tend to say that it might be unwise to undertake extrapolation.[21]
The assumption of a particular form for the relation between Y and X is another source of uncertainty. A properly conducted regression analysis will include an assessment of how well the assumed form is matched by the observed data, but it can only do so within the range of values of the independent variables actually available. This means that any extrapolation is particularly reliant on the assumptions being made about the structural form of the regression relationship. If this knowledge includes the fact that the dependent variable cannot go outside a certain range of values, this can be made use of in selecting the model – even if the observed dataset has no values particularly near such bounds. The implications of this step of choosing an appropriate functional form for the regression can be great when extrapolation is considered. At a minimum, it can ensure that any extrapolation arising from a fitted model is "realistic" (or in accord with what is known).
Power and sample size calculations
There are no generally agreed methods for relating the number of observations versus the number of independent variables in the model. One method conjectured by Good and Hardin is , where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable.[22] For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line (), then the maximum number of independent variables () the model can support is 4, because
.
Other methods
Although the parameters of a regression model are usually estimated using the method of least squares, other methods which have been used include:
All major statistical software packages perform least squares regression analysis and inference. Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized. Different software packages implement different methods, and a method with a given name may be implemented differently in different packages. Specialized regression software has been developed for use in fields such as survey analysis and neuroimaging.
^Francis Galton. "Typical laws of heredity", Nature 15 (1877), 492–495, 512–514, 532–533. (Galton uses the term "reversion" in this paper, which discusses the size of peas.)
^Francis Galton. Presidential address, Section H, Anthropology. (1885) (Galton uses the term "regression" in this paper, which discusses the height of humans.)
^Fotheringham, A. Stewart; Brunsdon, Chris; Charlton, Martin (2002). Geographically weighted regression: the analysis of spatially varying relationships (Reprint ed.). Chichester, England: John Wiley. ISBN978-0-471-49616-8.
^Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
^Good, P. I.; Hardin, J. W. (2009). Common Errors in Statistics (And How to Avoid Them) (3rd ed.). Hoboken, New Jersey: Wiley. p. 211. ISBN978-0-470-45798-6.
Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN978-0-471-17082-2.
Fox, J. (1997). Applied Regression Analysis, Linear Models and Related Methods. Sage
Hardle, W., Applied Nonparametric Regression (1990), ISBN0-521-42950-1
Meade, Nigel; Islam, Towhidul (1995). "Prediction intervals for growth curve forecasts". Journal of Forecasting. 14 (5): 413–430. doi:10.1002/for.3980140502.
A. Sen, M. Srivastava, Regression Analysis — Theory, Methods, and Applications, Springer-Verlag, Berlin, 2011 (4th printing).
T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). Vieweg+Teubner, ISBN978-3-8348-1022-9.
Stulp, Freek, and Olivier Sigaud. Many Regression Algorithms, One Unified Model: A Review. Neural Networks, vol. 69, Sept. 2015, pp. 60–79. https://doi.org/10.1016/j.neunet.2015.05.005.
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Steve SlaterBerkas:Steve Slater.jpgLahirStephen Slater1957Darlington, County Durham, InggrisKebangsaan InggrisPekerjaanWartawan, jurnalis, pembalap mobil, humasDikenal atasKomentator balap F1 untuk STAR Sports Stephen Steve Slater adalah komentator a...
ثمان عشرة لغة معزولة في أمازونيا تكون لغة معزولة، أيما لغة طبيعية ليست لها أية قرابة أو نسب إلى غيرها من اللغات، أي كل واحدة لم تثبت صلتها بأحد أصول اللغات المعروفة.[1][2][3] قائمة اللغات المعزولة حسب القارات آسيا لغة حالة تعليق بروشسكي محكية في شمال باكستان أوروب�...
Ne doit pas être confondu avec Substance réfractaire. Pour les articles homonymes, voir matériau (homonymie). Restauration de l'habillage intérieur d'un four en briques réfractaires. Un matériau réfractaire est un matériau qui a une forte résistance à un facteur (physique, chimique, biologique) susceptible de le dégrader, le plus souvent la chaleur. Par exemple, un four à bois peut être fait de briques réfractaires. Terminologie Réfractaire est un terme français recensé en 1...
Nokia 3120 classicPembuatNokiaJaringan2G: GSM-850 / GSM-900 / GSM-1800 / GSM-19003G: UMTS-850 / UMTS-2100, UMTS-900 / UMTS-2100, or UMTS-1900 depending on region and carrierKetersediaan menurut negara2008Berat85 g (3,0 oz)Sistem OperasiSeries 40Memori30 MB internalKartu ExternalmicroSD (TransFlash)LayarTFT, 240 x 320 pixels, 16M colorsKamera2 MegapixelsKamera keduaVGA video call cameraKonektivitasmicroUSB, Bluetooth Nokia 3120 klasik adalah ponsel quad-band 3G dari Nokia. Ini diumum...
1789 abolition of the French feudal system by the National Constituent Assembly Meeting of the night of 4 August 1789 by Charles Monnet, (Musée de la Révolution française). One of the central events of the French Revolution was to abolish feudalism, and the old rules, taxes and privileges left over from the age of feudalism. The National Constituent Assembly, acting on the night of 4 August 1789, announced, The National Assembly abolishes the feudal system entirely.[1] It abolished...
American modern dance dancer, teacher, and choreographer (1916 – 2004) Bella LewitzkyLewitzky in a 1949 performance of The Warsaw GhettoBornBella Rebecca Lewitzky(1916-01-13)January 13, 1916Llano del Rio, CaliforniaDiedJuly 16, 2004(2004-07-16) (aged 88)Pasadena, CaliforniaSpouse Newell Reynolds (m. 1940)ChildrenNora Reynolds Daniel Bella Rebecca Lewitzky (January 13, 1916 – July 16, 2004) was an American modern dance choreographer, dancer and teacher. ...
American composer (1937–2022) Angelo BadalamentiBackground informationBirth nameAngelo Daniel BadalamentiBorn(1937-03-22)March 22, 1937Brooklyn, New York, U.S.DiedDecember 11, 2022(2022-12-11) (aged 85)Lincoln Park, New Jersey, U.S.GenresFilm score, jazz, ambientYears active1962–2022Musical artist Angelo Daniel Badalamenti (March 22, 1937 – December 11, 2022) was an American composer and arranger best known for his work in composing for films. He is best known for his acclaimed col...
Crater created by the Sedan shallow underground nuclear test explosion A flooded crater produced by the 2020 Beirut explosion. In a large explosion like this, the energy may not only cause destruction like that shown in the picture, but eject large amounts of material from the ground, creating a hole in the earth. An explosion crater is a type of crater formed when material is ejected from the surface of the ground by an explosion at or immediately above or below the surface. Stylised cross-s...
Canadian professional wrestlerThis article is about the professional wrestler. For the Scottish soccer player, see Archie Goldie. For the meteorologist, see Archibald Goldie (meteorologist). Archie GouldieBirth nameArchibald Edward GouldieBorn(1936-11-22)November 22, 1936Carbon, Alberta, CanadaDiedJanuary 23, 2016(2016-01-23) (aged 79)Knoxville, Tennessee, U.S.Professional wrestling careerRing name(s)Archie Gouldie[1]The Masked Bounty Hunter[2]The Midnight Stallion[2&...
Questa voce o sezione sull'argomento politici belgi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Paul-Henri SpaakPaul-Henri Spaak nel 1957 Segretario generale della NATODurata mandato16 maggio 1957 –21 aprile 1961 PredecessoreHastings Lionel Ismay SuccessoreDirk Stikker Primo Presidente dell'Assemblea comune europeaDurata mandato2...
Historical district in central Shanghai, China For The Bund of Ningbo, see Old Bund. For other uses, see Bund (disambiguation). The Bund in 2022 The BundThe Bund in Simplified (top) and Traditional (bottom) Chinese charactersSimplified Chinese外滩Traditional Chinese外灘Literal meaningOuter BeachTranscriptionsStandard MandarinHanyu PinyinWàitānIPA[wâɪ.tʰán]WuRomanizationNga3-thae1 (Shanghainese) A 1933 map of the Bund The Bund[a] is a waterfront area and a prot...
Estonian cyclist Aavo PikkuusPikkuus in 1977Personal informationBorn (1954-11-23) 23 November 1954 (age 69)Kapera, EstoniaHeight1.78 m (5 ft 10 in)Weight76 kg (168 lb) Medal record Men's road bicycle racing Representing the Soviet Union Olympic Games 1976 Montreal Team time trial World Championships 1975 Mettet and Yvoir Team time trial 1977 San Cristóbal Team time trial 1978 Nürburg Team time trial Aavo Pikkuus (born 23 November 1954) is a retired Estoni...
Frankfurter Rundschau Beschreibung Tageszeitung Verlag Frankfurter Rundschau GmbH (Deutschland) Hauptsitz Frankfurt am Main Erstausgabe 1. August 1945 Erscheinungsweise täglich außer sonntags Chefredakteur Karin Dalka, Michael Bayer Geschäftsführer Max Rempel Weblink fr.de ISSN (Print) 0940-6980 Straßenbahn in Frankfurt mit Rundschau-Werbung im Jahr 2003 Die Frankfurter Rundschau (FR) ist eine Tageszeitung, die seit dem 1. August 1945 in Frankfurt am Main erscheint. Bis zum 28. Feb...
1912 battle of the First Balkan War Battle of Kirk KilisePart of the First Balkan WarDate22-24 October 1912LocationKırk Kilise District, Adrianople Vilayet, Ottoman Empire(now Kırklareli, Turkey)41°44′05″N 27°13′31″E / 41.73472°N 27.22528°E / 41.73472; 27.22528Result Bulgarian victoryBelligerents Bulgaria Ottoman EmpireCommanders and leaders Radko Dimitriev Ivan Fichev Mahmud Muhtar Pasha (WIA) Abdullah PashaStrength 153,745 men[1] 98,3...
1459–1817 Ottoman administrative unit in Serbia Sanjak of SmederevoSanjak of the Ottoman Empire1459–16881699–17181739–17881791–18041813–1817The Pashalik of Belgrade in 1791CapitalSmederevo (1459–1521)Belgrade (1521–1817)GovernmentSanjakbey • 1462–1507 Ali Beg Mihaloglu (first)• 1815–1817 Marashli Ali Pasha History • Fall of the Serbian Despotate 1459• Autonomy of the Principality of Serbia 1817 Preceded by Succeeded by Serbian Despotat...
1624 English legislation United Kingdom legislationStatute of Monopolies[1]Act of ParliamentParliament of EnglandLong titleAn Act concerning Monopolies and Dispensations with penall Lawes and the Forfeyture thereof.[2]Citation21 Jas. 1. c. 3Introduced bySir Edward CokeTerritorial extent England and WalesDatesRoyal assent29 May 1624Commencement12 February 1624Other legislationAmended byStatute Law Revision Act 1863Patents, Designs, and Trade Marks Act 1883Statute Law Revi...
English rock band PulpPulp performing at the Hammersmith Apollo in 2023Background informationOriginSheffield, EnglandGenresBritpop[1]art rock[2]indie pop[3]DiscographyPulp discographyYears active 1978–2002 2011–2013 2022–present Labels Red Rhino Fire Island Spinoffs Relaxed Muscle Venini JARV IS... Members Jarvis Cocker Candida Doyle Nick Banks Mark Webber Past members Russell Senior Steve Mackey See Band members section for others Websitewelovepulp.info Pulp are...
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Neuchâtel» – noticias · libros · académico · imágenesEste aviso fue puesto el 3 de septiembre de 2020. Para otros usos de este término, véase Neuchâtel (desambiguación). Neuchâtel Ciudad BanderaEscudo NeuchâtelLocalización de Neuchâtel en SuizaCoordenadas 46°59′25″N 6°55′50″E / 46.990277777778, 6.9305555555556Idioma oficia...