Share to: share facebook share twitter share wa share telegram print page

Reservoir computing

Reservoir computing is a framework for computation derived from recurrent neural network theory that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir.[1] After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.[1] The first key benefit of this framework is that training is performed only at the readout stage, as the reservoir dynamics are fixed.[1] The second is that the computational power of naturally available systems, both classical and quantum mechanical, can be used to reduce the effective computational cost.[2]

History

The concept of reservoir computing stems from the use of recursive connections within neural networks to create a complex dynamical system.[3] It is a generalisation of earlier neural network architectures such as recurrent neural networks, liquid-state machines and echo-state networks. Reservoir computing also extends to physical systems that are not networks in the classical sense, but rather continuous systems in space and/or time: e.g. a literal "bucket of water" can serve as a reservoir that performs computations on inputs given as perturbations of the surface.[4] The resultant complexity of such recurrent neural networks was found to be useful in solving a variety of problems including language processing and dynamic system modeling.[3] However, training of recurrent neural networks is challenging and computationally expensive.[3] Reservoir computing reduces those training-related challenges by fixing the dynamics of the reservoir and only training the linear output layer.[3]

A large variety of nonlinear dynamical systems can serve as a reservoir that performs computations. In recent years semiconductor lasers have attracted considerable interest as computation can be fast and energy efficient compared to electrical components.

Recent advances in both AI and quantum information theory have given rise to the concept of quantum neural networks.[5] These hold promise in quantum information processing, which is challenging to classical networks, but can also find application in solving classical problems.[5][6] In 2018, a physical realization of a quantum reservoir computing architecture was demonstrated in the form of nuclear spins within a molecular solid.[6] However, the nuclear spin experiments in [6] did not demonstrate quantum reservoir computing per se as they did not involve processing of sequential data. Rather the data were vector inputs, which makes this more accurately a demonstration of quantum implementation of a random kitchen sink[7] algorithm (also going by the name of extreme learning machines in some communities). In 2019, another possible implementation of quantum reservoir processors was proposed in the form of two-dimensional fermionic lattices.[6] In 2020, realization of reservoir computing on gate-based quantum computers was proposed and demonstrated on cloud-based IBM superconducting near-term quantum computers.[8]

Reservoir computers have been used for time-series analysis purposes. In particular, some of their usages involve chaotic time-series prediction,[9][10] separation of chaotic signals,[11] and link inference of networks from their dynamics.[12]

Classical reservoir computing

Reservoir

The 'reservoir' in reservoir computing is the internal structure of the computer, and must have two properties: it must be made up of individual, non-linear units, and it must be capable of storing information. The non-linearity describes the response of each unit to input, which is what allows reservoir computers to solve complex problems. Reservoirs are able to store information by connecting the units in recurrent loops, where the previous input affects the next response. The change in reaction due to the past allows the computers to be trained to complete specific tasks.[13]

Reservoirs can be virtual or physical.[13] Virtual reservoirs are typically randomly generated and are designed like neural networks.[13][3] Virtual reservoirs can be designed to have non-linearity and recurrent loops, but, unlike neural networks, the connections between units are randomized and remain unchanged throughout computation.[13] Physical reservoirs are possible because of the inherent non-linearity of certain natural systems. The interaction between ripples on the surface of water contains the nonlinear dynamics required in reservoir creation, and a pattern recognition RC was developed by first inputting ripples with electric motors then recording and analyzing the ripples in the readout.[1]

Readout

The readout is a neural network layer that performs a linear transformation on the output of the reservoir.[1] The weights of the readout layer are trained by analyzing the spatiotemporal patterns of the reservoir after excitation by known inputs, and by utilizing a training method such as a linear regression or a Ridge regression.[1] As its implementation depends on spatiotemporal reservoir patterns, the details of readout methods are tailored to each type of reservoir.[1] For example, the readout for a reservoir computer using a container of liquid as its reservoir might entail observing spatiotemporal patterns on the surface of the liquid.[1]

Types

Context reverberation network

An early example of reservoir computing was the context reverberation network.[14] In this architecture, an input layer feeds into a high dimensional dynamical system which is read out by a trainable single-layer perceptron. Two kinds of dynamical system were described: a recurrent neural network with fixed random weights, and a continuous reaction–diffusion system inspired by Alan Turing’s model of morphogenesis. At the trainable layer, the perceptron associates current inputs with the signals that reverberate in the dynamical system; the latter were said to provide a dynamic "context" for the inputs. In the language of later work, the reaction–diffusion system served as the reservoir.

Echo state network

The Tree Echo State Network (TreeESN) model represents a generalization of the reservoir computing framework to tree structured data.[15]

Liquid-state machine

Chaotic Liquid State Machine

The liquid (i.e. reservoir) of a Chaotic Liquid State Machine (CLSM),[16][17] or chaotic reservoir, is made from chaotic spiking neurons but which stabilize their activity by settling to a single hypothesis that describes the trained inputs of the machine. This is in contrast to general types of reservoirs that don’t stabilize. The liquid stabilization occurs via synaptic plasticity and chaos control that govern neural connections inside the liquid. CLSM showed promising results in learning sensitive time series data.[16][17]

Nonlinear transient computation

This type of information processing is most relevant when time-dependent input signals depart from the mechanism’s internal dynamics.[18] These departures cause transients or temporary altercations which are represented in the device’s output.[18]

Deep reservoir computing

The extension of the reservoir computing framework towards Deep Learning, with the introduction of Deep Reservoir Computing and of the Deep Echo State Network (DeepESN) model[19][20][21][22] allows to develop efficiently trained models for hierarchical processing of temporal data, at the same time enabling the investigation on the inherent role of layered composition in recurrent neural networks.

Quantum reservoir computing

Quantum reservoir computing may use the nonlinear nature of quantum mechanical interactions or processes to form the characteristic nonlinear reservoirs[5][6][23][8] but may also be done with linear reservoirs when the injection of the input to the reservoir creates the nonlinearity.[24] The marriage of machine learning and quantum devices is leading to the emergence of quantum neuromorphic computing as a new research area.[25]

Types

Gaussian states of interacting quantum harmonic oscillators

Gaussian states are a paradigmatic class of states of continuous variable quantum systems.[26] Although they can nowadays be created and manipulated in, e.g, state-of-the-art optical platforms,[27] naturally robust to decoherence, it is well-known that they are not sufficient for, e.g., universal quantum computing because transformations that preserve the Gaussian nature of a state are linear.[28] Normally, linear dynamics would not be sufficient for nontrivial reservoir computing either. It is nevertheless possible to harness such dynamics for reservoir computing purposes by considering a network of interacting quantum harmonic oscillators and injecting the input by periodical state resets of a subset of the oscillators. With a suitable choice of how the states of this subset of oscillators depends on the input, the observables of the rest of the oscillators can become nonlinear functions of the input suitable for reservoir computing; indeed, thanks to the properties of these functions, even universal reservoir computing becomes possible by combining the observables with a polynomial readout function.[24] In principle, such reservoir computers could be implemented with controlled multimode optical parametric processes,[29] however efficient extraction of the output from the system is challenging especially in the quantum regime where measurement back-action must be taken into account.

2-D quantum dot lattices

In this architecture, randomized coupling between lattice sites grants the reservoir the “black box” property inherent to reservoir processors.[5] The reservoir is then excited, which acts as the input, by an incident optical field. Readout occurs in the form of occupational numbers of lattice sites, which are naturally nonlinear functions of the input.[5]

Nuclear spins in a molecular solid

In this architecture, quantum mechanical coupling between spins of neighboring atoms within the molecular solid provides the non-linearity required to create the higher-dimensional computational space.[6] The reservoir is then excited by radiofrequency electromagnetic radiation tuned to the resonance frequencies of relevant nuclear spins.[6] Readout occurs by measuring the nuclear spin states.[6]

Reservoir computing on gate-based near-term superconducting quantum computers

The most prevalent model of quantum computing is the gate-based model where quantum computation is performed by sequential applications of unitary quantum gates on qubits of a quantum computer.[30] A theory for the implementation of reservoir computing on a gate-based quantum computer with proof-of-principle demonstrations on a number of IBM superconducting noisy intermediate-scale quantum (NISQ) computers[31] has been reported in.[8]

See also

References

  1. ^ a b c d e f g h Tanaka, Gouhei; Yamane, Toshiyuki; Héroux, Jean Benoit; Nakane, Ryosho; Kanazawa, Naoki; Takeda, Seiji; Numata, Hidetoshi; Nakano, Daiju; Hirose, Akira (2019). "Recent advances in physical reservoir computing: A review". Neural Networks. 115: 100–123. arXiv:1808.04962. doi:10.1016/j.neunet.2019.03.005. ISSN 0893-6080. PMID 30981085.
  2. ^ Röhm, André; Lüdge, Kathy (2018-08-03). "Multiplexed networks: reservoir computing with virtual and real nodes". Journal of Physics Communications. 2 (8): 085007. arXiv:1802.08590. Bibcode:2018JPhCo...2h5007R. doi:10.1088/2399-6528/aad56d. ISSN 2399-6528.
  3. ^ a b c d e Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. "An overview of reservoir computing: theory, applications, and implementations." Proceedings of the European Symposium on Artificial Neural Networks ESANN 2007, pp. 471–482.
  4. ^ Fernando, C.; Sojakka, Sampsa (2003). "Pattern Recognition in a Bucket". Advances in Artificial Life. Lecture Notes in Computer Science. Vol. 2801. pp. 588–597. doi:10.1007/978-3-540-39432-7_63. ISBN 978-3-540-20057-4. S2CID 15073928.
  5. ^ a b c d e Ghosh, Sanjib; Opala, Andrzej; Matuszewski, Michał; Paterek, Tomasz; Liew, Timothy C. H. (December 2019). "Quantum reservoir processing". npj Quantum Information. 5 (1): 35. arXiv:1811.10335. Bibcode:2019npjQI...5...35G. doi:10.1038/s41534-019-0149-8. ISSN 2056-6387. S2CID 119197635.
  6. ^ a b c d e f g h Negoro, Makoto; Mitarai, Kosuke; Fujii, Keisuke; Nakajima, Kohei; Kitagawa, Masahiro (2018-06-28). "Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid". arXiv:1806.10910 [quant-ph].
  7. ^ Rahimi, Ali; Recht, Benjamin (December 2008). "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in Learning" (PDF). NIPS'08: Proceedings of the 21st International Conference on Neural Information Processing Systems: 1313–1320.
  8. ^ a b c Chen, Jiayin; Nurdin, Hendra; Yamamoto, Naoki (2020-08-24). "Temporal Information Processing on Noisy Quantum Computers". Physical Review Applied. 14 (2): 024065. arXiv:2001.09498. Bibcode:2020PhRvP..14b4065C. doi:10.1103/PhysRevApplied.14.024065. S2CID 210920543.
  9. ^ Pathak, Jaideep; Hunt, Brian; Girvan, Michelle; Lu, Zhixin; Ott, Edward (2018-01-12). "Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach". Physical Review Letters. 120 (2): 024102. Bibcode:2018PhRvL.120b4102P. doi:10.1103/PhysRevLett.120.024102. PMID 29376715.
  10. ^ Vlachas, P.R.; Pathak, J.; Hunt, B.R.; Sapsis, T.P.; Girvan, M.; Ott, E.; Koumoutsakos, P. (2020-03-21). "Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics". Neural Networks. 126: 191–217. arXiv:1910.05266. doi:10.1016/j.neunet.2020.02.016. ISSN 0893-6080. PMID 32248008. S2CID 211146609.
  11. ^ Krishnagopal, Sanjukta; Girvan, Michelle; Ott, Edward; Hunt, Brian R. (2020-02-01). "Separation of chaotic signals by reservoir computing". Chaos: An Interdisciplinary Journal of Nonlinear Science. 30 (2): 023123. arXiv:1910.10080. Bibcode:2020Chaos..30b3123K. doi:10.1063/1.5132766. ISSN 1054-1500. PMID 32113243. S2CID 204823815.
  12. ^ Banerjee, Amitava; Hart, Joseph D.; Roy, Rajarshi; Ott, Edward (2021-07-20). "Machine Learning Link Inference of Noisy Delay-Coupled Networks with Optoelectronic Experimental Tests". Physical Review X. 11 (3): 031014. arXiv:2010.15289. Bibcode:2021PhRvX..11c1014B. doi:10.1103/PhysRevX.11.031014.
  13. ^ a b c d Soriano, Miguel C. (2017-02-06). "Viewpoint: Reservoir Computing Speeds Up". Physics. 10: 12. doi:10.1103/Physics.10.12. hdl:10261/173181.
  14. ^ Kevin Kirby. "Context dynamics in neural sequential learning." Proceedings of the Florida Artificial Intelligence Research Symposium FLAIRS (1991), 66–70.
  15. ^ Gallicchio, Claudio; Micheli, Alessio (2013). "Tree Echo State Networks". Neurocomputing. 101: 319–337. doi:10.1016/j.neucom.2012.08.017. hdl:11568/158480.
  16. ^ a b Aoun, Mario Antoine; Boukadoum, Mounir (2014). "Learning algorithm and neurocomputing architecture for NDS Neurons". 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing. IEEE. pp. 126–132. doi:10.1109/icci-cc.2014.6921451. ISBN 978-1-4799-6081-1. S2CID 16026952.
  17. ^ a b Aoun, Mario Antoine; Boukadoum, Mounir (2015). "Chaotic Liquid State Machine". International Journal of Cognitive Informatics and Natural Intelligence. 9 (4): 1–20. doi:10.4018/ijcini.2015100101. ISSN 1557-3958.
  18. ^ a b Crook, Nigel (2007). "Nonlinear Transient Computation". Neurocomputing. 70 (7–9): 1167–1176. doi:10.1016/j.neucom.2006.10.148.
  19. ^ Pedrelli, Luca (2019). Deep Reservoir Computing: A Novel Class of Deep Recurrent Neural Networks (PhD thesis). Università di Pisa.
  20. ^ Gallicchio, Claudio; Micheli, Alessio; Pedrelli, Luca (2017-12-13). "Deep reservoir computing: A critical experimental analysis". Neurocomputing. 268: 87–99. doi:10.1016/j.neucom.2016.12.089. hdl:11568/851934.
  21. ^ Gallicchio, Claudio; Micheli, Alessio (2017-05-05). "Echo State Property of Deep Reservoir Computing Networks". Cognitive Computation. 9 (3): 337–350. doi:10.1007/s12559-017-9461-9. hdl:11568/851932. ISSN 1866-9956. S2CID 1077549.
  22. ^ Gallicchio, Claudio; Micheli, Alessio; Pedrelli, Luca (December 2018). "Design of deep echo state networks". Neural Networks. 108: 33–47. doi:10.1016/j.neunet.2018.08.002. hdl:11568/939082. ISSN 0893-6080. PMID 30138751. S2CID 52075702.
  23. ^ Chen, Jiayin; Nurdin, Hendra (2019-05-15). "Learning nonlinear input–output maps with dissipative quantum systems". Quantum Information Processing. 18 (7): 198. arXiv:1901.01653. Bibcode:2019QuIP...18..198C. doi:10.1007/s11128-019-2311-9. S2CID 57573677.
  24. ^ a b Nokkala, Johannes; Martínez-Peña, Rodrigo; Giorgi, Gian Luca; Parigi, Valentina; Soriano, Miguel C.; Zambrini, Roberta (2021). "Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing". Communications Physics. 4 (1): 53. arXiv:2006.04821. Bibcode:2021CmPhy...4...53N. doi:10.1038/s42005-021-00556-w. S2CID 234355683.
  25. ^ Marković, Danijela; Grollier, Julie (2020-10-13). "Quantum Neuromorphic Computing". Applied Physics Letters. 117 (15): 150501. arXiv:2006.15111. Bibcode:2020ApPhL.117o0501M. doi:10.1063/5.0020014. S2CID 210920543.
  26. ^ Ferraro, Alessandro; Olivares, Stefano; Paris, Matteo G. A. (2005-03-31). "Gaussian states in continuous variable quantum information". arXiv:quant-ph/0503237.
  27. ^ Roslund, Jonathan; de Araújo, Renné Medeiros; Jiang, Shifeng; Fabre, Claude; Treps, Nicolas (2013-12-15). "Wavelength-multiplexed quantum networks with ultrafast frequency combs". Nature Photonics. 8 (2): 109–112. arXiv:1307.1216. doi:10.1038/nphoton.2013.340. ISSN 1749-4893. S2CID 2328402.
  28. ^ Bartlett, Stephen D.; Sanders, Barry C.; Braunstein, Samuel L.; Nemoto, Kae (2002-02-14). "Efficient Classical Simulation of Continuous Variable Quantum Information Processes". Physical Review Letters. 88 (9): 097904. arXiv:quant-ph/0109047. Bibcode:2002PhRvL..88i7904B. doi:10.1103/PhysRevLett.88.097904. PMID 11864057. S2CID 2161585.
  29. ^ Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V. (2018-05-09). "Reconfigurable optical implementation of quantum complex networks". New Journal of Physics. 20 (5): 053024. arXiv:1708.08726. Bibcode:2018NJPh...20e3024N. doi:10.1088/1367-2630/aabc77. ISSN 1367-2630. S2CID 119091176.
  30. ^ Nielsen, Michael; Chuang, Isaac (2010), Quantum Computation and Quantum Information (2 ed.), Cambridge University Press Cambridge
  31. ^ John Preskill. "Quantum Computing in the NISQ era and beyond." Quantum 2,79 (2018)

Further reading

Read other articles:

Barthélémy de Theux de Meylandt Geboren 26 februari 1794Sint-Truiden Overleden 21 augustus 1874Heusden Premier van België Aangetreden 4 augustus 1834 Einde termijn 18 april 1840 Voorganger Albert Goblet d'Alviella Opvolger Joseph Lebeau Premier van België Aangetreden 31 maart 1846 Einde termijn 12 augustus 1847 Voorganger Sylvain Van de Weyer Opvolger Charles Rogier Premier van België Aangetreden 7 december 1871 Einde termijn 21 augustus 1874 Voorganger Jules Joseph d'Anethan Opvolger Jules…

Niccolò Matas Niccolò Matas, noto anche come Nicolò o Nicola, (Ancona, 6 dicembre 1798 – Firenze, 11 marzo 1872) è stato un architetto italiano. È noto soprattutto per essere stato l'artefice della facciata della Basilica di Santa Croce a Firenze. Indice 1 Biografia 1.1 Santa Croce e le altre opere fiorentine 1.2 Opere anconitane 1.3 Altre opere 2 Pubblicazioni 3 Note 4 Bibliografia 5 Altri progetti 6 Collegamenti esterni Biografia Nato ad Ancona nel 1798, era membro della nutrita comunit…

Jean-François AmiguetLahir1950 (umur 72–73)Vevey, SwissPekerjaanSutradaraPenulis naskahTahun aktif1983-2003 Jean-François Amiguet (kelahiran 1950) adalah seorang sutradara dan penulis naskah asal Swiss. Film buatannya Lounge Chair ditayangkan dalam sesi Un Certain Regard di Festival Film Cannes 1988.[1] Filmografi Alexandre (1983) La méridienne (1988) Le film du cinéma suisse (1991) L'écrivain public (1993) Histoires de fête (2000) Au sud des nuages (2003) Elle est …

محمد أمين الأسترآبادي معلومات شخصية مكان الميلاد جرجان الوفاة 1023 هـ.مكة. مواطنة إيران  الحياة العملية التلامذة المشهورون زين العابدين الحسيني الكاشاني  المهنة مُحَدِّث  تعديل مصدري - تعديل   الشيخ محمد أمين بن محمد شريف الأسترآبادي (ت. 1023 هـ). هو فقيه شيعي من فقهاء ا…

Бєднов Олександр Олександрович  Капітан Загальна інформаціяНародження 29 серпня 1969(1969-08-29)Луганськ, Українська РСРСмерть 1 січня 2015(2015-01-01) (45 років)Лутугине, Луганська область,  УкраїнаПоховання ЛуганськAlma Mater Луганський державний університет внутрішніх справ імені Е…

' قرية بئر باخبيرة  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حضرموت المديرية مديرية القطن العزلة عزلة القطن السكان التعداد السكاني 2004 السكان 7   • الذكور 4   • الإناث 3   • عدد الأسر 1   • عدد المساكن 3 معلومات أخرى التوقيت توقيت اليمن (+3 غرينيتش) ت

Tongdosa통도사AgamaAfiliasi agamaOrdo Jogye Buddhisme KoreaLokasiNegaraKorea SelatanKoordinat35°29′17″N 129°3′53″E / 35.48806°N 129.06472°E / 35.48806; 129.06472Koordinat: 35°29′17″N 129°3′53″E / 35.48806°N 129.06472°E / 35.48806; 129.06472 Situs Warisan Dunia UNESCOLokasiYangsan, Republik KoreaKriteriaKultural: iiiNomor identifikasi1562-1Pengukuhan2018 (Sesi ke-42) TongdosaHangul통도사 Hanja通度寺 Alih AksaraTongdo…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Suster Brigitta Renyaan lahir di Langur, Maluku, pada tahun 1953. Suster Brigitta Renyaan adalah salah satu tokoh masyarakat Maluku yang memiliki gagasan kuat tentang rekonsiliasi antar komunitas beragama sejak pecah konflik Maluku tahun 1999, terutama d…

Keuskupan Saint-Denis-de-La RéunionDioecesis Sancti Dionysii ReunionisDiocèse de Saint-Denis de La RéunionKatolik Katedral Saint-DenisLokasiNegara Réunion, PrancisProvinsi gerejawiSubyek Langsung Takhta SuciStatistikLuas2.600 km2 (1.000 sq mi)Populasi- Total- Katolik(per 2010)806.000644,000 (79.9%)InformasiDenominasiKatolikGereja sui iurisGereja LatinRitusRitus RomaPendirian1712 (sebagai Prefektur Apostolik Kepulauan Samudera Hindia)1818 (sebagai Prefe…

Iago Aspas Informasi pribadiNama lengkap Iago Aspas Juncal[1]Tanggal lahir 1 Agustus 1987 (umur 36)Tempat lahir Moaña, SpanyolTinggi 1,76 m[2]Posisi bermain PenyerangInformasi klubKlub saat ini CeltaNomor 10Karier junior Moaña1995–2006 Celta2004–2005 → Rápido Bouzas (pinjaman)Karier senior*Tahun Tim Tampil (Gol)2006–2009 Celta B 84 (11)2008–2013 Celta 136 (46)2013–2015 Liverpool 14 (0)2014–2015 → Sevilla (pinjaman) 16 (2)2015– Celta 101 (55)Tim nasional…

Mujahideen in Chechnya  Jihadist black flag and Coat of Arms of the ChRIFounderFathi al-UrduniLeaders Ibn al-Khattab (1999–2002) Abu al-Walid (2002–2004) Abu Hafs al-Urduni (2004–2006) Muhannad (2006–2011) Abdullah al-Kurdi (2011) Dates of operation1995–2012Allegiance Chechen Republic of Ichkeria Caucasus Emirate since 2007MotivesChechen independence from Russia and Shariah in ChechnyaIdeologyIslamismJihadismSizeHundredsOpponents Russia  Georgia KadyrovitesBattles a…

У этого термина существуют и другие значения, см. ДМ. Блок Д Семейство разгонных блоков Д — семейство разгонных блоков (верхних ступеней), происходящих от блока «Д» — пятой ступени космического ракетного комплекса Н1-Л3, предназначенного для полёта на Луну советских к…

You can help expand this article with text translated from the corresponding article in German. (September 2022) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikiped…

E

  此條目介紹的是拉丁字母中的第5個字母。关于其他用法,请见「E (消歧义)」。 E 拉丁字母 e Unicode编码 大写:U+0045小写:U+0065 字母称呼 拉丁语发音 /eː/ 英语发音 /iː/ 德语发音 /eː/ 法语发音 /ə/ 西班牙语发音 /e/ 汉语拼音发音 /ɤ/ 对应 相关的希腊字母 ε 相关的西里尔字母 е 相关的亚美尼亚字母 ե 相关的格鲁吉亚字母 ე 相关的希伯来字母 ה 相关的阿拉伯字母 ﻩ 拉…

2002 studio album by High on FireSurrounded by ThievesStudio album by High on FireReleasedMay 28, 2002GenreStoner metal, sludge metalLength40:38LabelRelapse RecordsProducerBilly Anderson & High on FireHigh on Fire chronology The Art of Self Defense(2000) Surrounded by Thieves(2002) Blessed Black Wings(2005) Surrounded by Thieves is the second studio album by American heavy metal band High on Fire. It was the band's first album for Relapse Records and was produced by Billy Anderson an…

Norse mythical character In Norse mythology, Sindri (Old Norse: [ˈsindre], from sindr, spark) is the name of both a dwarf and a hall that will serve as a dwelling place for the souls of the virtuous after the events of Ragnarök. Sindri is also referred to as Eitri, the brother of Brokkr. A dwarf Völuspá (37) mentions a hall of gods, of the lineage of Sindri[1] located northward, in Niðavellir. There are several reasons to think that Sindri is a dwarf:[2] his name is …

2012 Maldivian filmLove StoryOfficial film posterDirected byAbdul FaththaahWritten byIbrahim WaheedScreenplay byIbrahim WaheedAbdul FaththaahProduced byHussain NooradeenStarringAli SeezanAmira IsmailAishath RishmyCinematographyIbrahim WisanEdited byMohamed AkshamAbdul FaththaahMusic byIbrahim NifarProductioncompanyNoor N MoviesRelease date February 28, 2012 (2012-02-28) CountryMaldivesLanguageDhivehi Love Story is a 2012 Maldivian romantic film directed by Abdul Faththaah. Produce…

1944 film by Harold D. Schuster Marine RaidersOriginal film posterDirected byHarold D. SchusterRobert Wise (additional scenes)Written byMartin RackinWarren DuffProduced byRobert FellowsStarringPat O'BrienRobert RyanRuth HusseyCinematographyNicholas MusuracaEdited byPhilip Martin Jr.Music byRoy WebbDistributed byRKORelease dateJune 30, 1944 (1944-06-30)Running time88 minutesCountryUnited StatesLanguageEnglish Marine Raiders is a 1944 RKO war film showing a fictional depiction of th…

Simcha ShirmanSimha Shirman in his Studio in Tel AvivBorn1947GermanyNationalityIsraeliKnown forPhotography Simcha Shirman (Born 1947) is a German-born Israeli photographer and educator.[1] Biography Early life Simcha Shearman was born in 1947 to Batya and David, both Holocoust survivors. He was born in Saint Ottilien Convent, which was converted by USA occupation authorities to a soldier and refugee hospital after WWII. His birth certificate states that he is a displaced person. The…

American voice actress (1944–2019) Russi TaylorTaylor in 2018Born(1944-05-04)May 4, 1944Cambridge, Massachusetts, U.S.DiedJuly 26, 2019(2019-07-26) (aged 75)Glendale, California, U.S.Resting placeForest Lawn Memorial ParkOccupationVoice actressYears active1976–2019Spouse Wayne Allwine ​ ​(m. 1991; died 2009)​ Russi Taylor (May 4, 1944 – July 26, 2019) was an American voice actress. She was best remembered for voicing Minnie Mouse fr…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.141.31.100