Quasi-Newton method

In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives. Newton's method requires the Jacobian matrix of all partial derivatives of a multivariate function when used to search for zeros or the Hessian matrix when used for finding extrema. Quasi-Newton methods, on the other hand, can be used when the Jacobian matrices or Hessian matrices are unavailable or are impractical to compute at every iteration.

Some iterative methods that reduce to Newton's method, such as sequential quadratic programming, may also be considered quasi-Newton methods.

Search for zeros: root finding

Newton's method to find zeroes of a function of multiple variables is given by , where is the left inverse of the Jacobian matrix of evaluated for .

Strictly speaking, any method that replaces the exact Jacobian with an approximation is a quasi-Newton method.[1] For instance, the chord method (where is replaced by for all iterations) is a simple example. The methods given below for optimization refer to an important subclass of quasi-Newton methods, secant methods.[2]

Using methods developed to find extrema in order to find zeroes is not always a good idea, as the majority of the methods used to find extrema require that the matrix that is used is symmetrical. While this holds in the context of the search for extrema, it rarely holds when searching for zeroes. Broyden's "good" and "bad" methods are two methods commonly used to find extrema that can also be applied to find zeroes. Other methods that can be used are the column-updating method, the inverse column-updating method, the quasi-Newton least squares method and the quasi-Newton inverse least squares method.

More recently quasi-Newton methods have been applied to find the solution of multiple coupled systems of equations (e.g. fluid–structure interaction problems or interaction problems in physics). They allow the solution to be found by solving each constituent system separately (which is simpler than the global system) in a cyclic, iterative fashion until the solution of the global system is found.[2][3]

Search for extrema: optimization

The search for a minimum or maximum of a scalar-valued function is closely related to the search for the zeroes of the gradient of that function. Therefore, quasi-Newton methods can be readily applied to find extrema of a function. In other words, if is the gradient of , then searching for the zeroes of the vector-valued function corresponds to the search for the extrema of the scalar-valued function ; the Jacobian of now becomes the Hessian of . The main difference is that the Hessian matrix is a symmetric matrix, unlike the Jacobian when searching for zeroes. Most quasi-Newton methods used in optimization exploit this symmetry.

In optimization, quasi-Newton methods (a special case of variable-metric methods) are algorithms for finding local maxima and minima of functions. Quasi-Newton methods for optimization are based on Newton's method to find the stationary points of a function, points where the gradient is 0. Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point. In higher dimensions, Newton's method uses the gradient and the Hessian matrix of second derivatives of the function to be minimized.

In quasi-Newton methods the Hessian matrix does not need to be computed. The Hessian is updated by analyzing successive gradient vectors instead. Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems. In multiple dimensions the secant equation is under-determined, and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the Hessian.

The first quasi-Newton algorithm was proposed by William C. Davidon, a physicist working at Argonne National Laboratory. He developed the first quasi-Newton algorithm in 1959: the DFP updating formula, which was later popularized by Fletcher and Powell in 1963, but is rarely used today. The most common quasi-Newton algorithms are currently the SR1 formula (for "symmetric rank-one"), the BHHH method, the widespread BFGS method (suggested independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970), and its low-memory extension L-BFGS. The Broyden's class is a linear combination of the DFP and BFGS methods.

The SR1 formula does not guarantee the update matrix to maintain positive-definiteness and can be used for indefinite problems. The Broyden's method does not require the update matrix to be symmetric and is used to find the root of a general system of equations (rather than the gradient) by updating the Jacobian (rather than the Hessian).

One of the chief advantages of quasi-Newton methods over Newton's method is that the Hessian matrix (or, in the case of quasi-Newton methods, its approximation) does not need to be inverted. Newton's method, and its derivatives such as interior point methods, require the Hessian to be inverted, which is typically implemented by solving a system of linear equations and is often quite costly. In contrast, quasi-Newton methods usually generate an estimate of directly.

As in Newton's method, one uses a second-order approximation to find the minimum of a function . The Taylor series of around an iterate is

where () is the gradient, and an approximation to the Hessian matrix.[4] The gradient of this approximation (with respect to ) is

and setting this gradient to zero (which is the goal of optimization) provides the Newton step:

The Hessian approximation is chosen to satisfy

which is called the secant equation (the Taylor series of the gradient itself). In more than one dimension is underdetermined. In one dimension, solving for and applying the Newton's step with the updated value is equivalent to the secant method. The various quasi-Newton methods differ in their choice of the solution to the secant equation (in one dimension, all the variants are equivalent). Most methods (but with exceptions, such as Broyden's method) seek a symmetric solution (); furthermore, the variants listed below can be motivated by finding an update that is as close as possible to in some norm; that is, , where is some positive-definite matrix that defines the norm. An approximate initial value is often sufficient to achieve rapid convergence, although there is no general strategy to choose .[5] Note that should be positive-definite. The unknown is updated applying the Newton's step calculated using the current approximate Hessian matrix :

  • , with chosen to satisfy the Wolfe conditions;
  • ;
  • The gradient computed at the new point , and

is used to update the approximate Hessian , or directly its inverse using the Sherman–Morrison formula.

  • A key property of the BFGS and DFP updates is that if is positive-definite, and is chosen to satisfy the Wolfe conditions, then is also positive-definite.

The most popular update formulas are:

Method
BFGS
Broyden
Broyden family
DFP
SR1

Other methods are Pearson's method, McCormick's method, the Powell symmetric Broyden (PSB) method and Greenstadt's method.[2] These recursive low-rank matrix updates can also represented as an initial matrix plus a low-rank correction. This is the Compact quasi-Newton representation, which is particularly effective for constrained and/or large problems.

Relationship to matrix inversion

When is a convex quadratic function with positive-definite Hessian , one would expect the matrices generated by a quasi-Newton method to converge to the inverse Hessian . This is indeed the case for the class of quasi-Newton methods based on least-change updates.[6]

Notable implementations

Implementations of quasi-Newton methods are available in many programming languages.

Notable open source implementations include:

  • GNU Octave uses a form of BFGS in its fsolve function, with trust region extensions.
  • GNU Scientific Library implements the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
  • ALGLIB implements (L)BFGS in C++ and C#
  • R's optim general-purpose optimizer routine uses the BFGS method by using method="BFGS".[7]
  • Scipy.optimize has fmin_bfgs. In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation.[8]

Notable proprietary implementations include:

  • Mathematica includes quasi-Newton solvers.[9]
  • The NAG Library contains several routines[10] for minimizing or maximizing a function[11] which use quasi-Newton algorithms.
  • In MATLAB's Optimization Toolbox, the fminunc function uses (among other methods) the BFGS quasi-Newton method.[12] Many of the constrained methods of the Optimization toolbox use BFGS and the variant L-BFGS.[13]

See also

References

  1. ^ Broyden, C. G. (1972). "Quasi-Newton Methods". In Murray, W. (ed.). Numerical Methods for Unconstrained Optimization. London: Academic Press. pp. 87–106. ISBN 0-12-512250-0.
  2. ^ a b c Haelterman, Rob (2009). "Analytical study of the Least Squares Quasi-Newton method for interaction problems". PhD Thesis, Ghent University. Retrieved 2014-08-14.
  3. ^ Rob Haelterman; Dirk Van Eester; Daan Verleyen (2015). "Accelerating the solution of a physics model inside a tokamak using the (Inverse) Column Updating Method". Journal of Computational and Applied Mathematics. 279: 133–144. doi:10.1016/j.cam.2014.11.005.
  4. ^ "Introduction to Taylor's theorem for multivariable functions - Math Insight". mathinsight.org. Retrieved November 11, 2021.
  5. ^ Nocedal, Jorge; Wright, Stephen J. (2006). Numerical Optimization. New York: Springer. pp. 142. ISBN 0-387-98793-2.
  6. ^ Robert Mansel Gower; Peter Richtarik (2015). "Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms". arXiv:1602.01768 [math.NA].
  7. ^ "optim function - RDocumentation". www.rdocumentation.org. Retrieved 2022-02-21.
  8. ^ "Scipy.optimize.minimize — SciPy v1.7.1 Manual".
  9. ^ "Unconstrained Optimization: Methods for Local Minimization—Wolfram Language Documentation". reference.wolfram.com. Retrieved 2022-02-21.
  10. ^ The Numerical Algorithms Group. "Keyword Index: Quasi-Newton". NAG Library Manual, Mark 23. Retrieved 2012-02-09.
  11. ^ The Numerical Algorithms Group. "E04 – Minimizing or Maximizing a Function" (PDF). NAG Library Manual, Mark 23. Retrieved 2012-02-09.
  12. ^ "Find minimum of unconstrained multivariable function - MATLAB fminunc".
  13. ^ "Constrained Nonlinear Optimization Algorithms - MATLAB & Simulink". www.mathworks.com. Retrieved 2022-02-21.

Further reading

Read other articles:

Parliamentary elections held in Iraq 2018 Iraqi parliamentary election ← 2014 12 May 2018 (2018-05-12) 2021 → All 329 seats in the Council of Representatives165 seats needed for a majorityTurnout44.52% ( 17.48 pp)[1]   First party Second party Third party   Leader Muqtada al-Sadr Hadi Al-Amiri Haider al-Abadi Party Parties Sadrist Movement Iraqi Communist Party[2] and others[3] Parties ISCI old guard Badr Organization Al-S...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

 

Japanese-American tennis player The native form of this personal name is Shibahara Ena. This article uses Western name order when mentioning individuals. Ena ShibaharaShibahara at the 2016 US OpenCountry (sports) United States (2014 – July 2019) Japan (8 July 2019 – current)ResidenceRancho Palos Verdes, CaliforniaBorn (1998-02-12) February 12, 1998 (age 26)Mountain View, California, U.S.[1]Height1.75 m (5 ft 9 in)Turned pro2018PlaysRight...

Albanian politician of the Albanian Party of Labour Koço Theodhosi9th Minister of Industry and Mines of AlbaniaIn office19 July 1954 – 12 June 1955Minister of Industry and Mines of AlbaniaIn office17 March 1966 – 29 May 1975 Personal detailsBorn(1913-05-21)21 May 1913Korçë, AlbaniaDied31 May 1977(1977-05-31) (aged 64)Tirana, AlbaniaSignature Koço Theodhosi (21 May 1913 in Korçë[1] – 31 May 1977) was an Albanian politician of the Albanian Party o...

 

Layar judul World of IllusionWorld of Illusion Starring Mickey Mouse and Donald Duck adalah sebuah permainan video yang diproduksi oleh Sega di Amerika Serikat dan dirilis tahun 1992. Level Pertama Permainan ini berkisah tentang Miki Tikus dan Donal Bebek yang masuk ke dunia sihir, yang mirip dengan Alice in Wonderland. Mereka harus melewati berbagai rintangan untuk mencapai rumah. Di Jepang, judul permainan ini adalah Alive! Mickey & Donald: Fushigi na Magic Box. Artikel bertopik permain...

 

2018 twelfth-generation high-end smartphone produced by Apple Inc. iPhone XSiPhone XS MaxiPhone XS in GoldBrandApple Inc.Manufacturer Foxconn[1] (on contract) SloganWelcome to the big screens.Generation12thModelXS: A1920 (sold in US) A2097 (sold in Europe)A2098 (sold in Japan)A2100 (sold in China) XS Max:A1921A2101A2102 (sold in Japan)A2104 (sold in China)Compatible networksGSM, CDMA2000, EV-DO, HSPA+, LTE, LTE AdvancedFirst releasedSeptember 21, 2018; 5 years ago (2...

Italia Sport Lacrosse Federazione Federazione Italiana Giuoco Lacrosse - FIGL Confederazione International Lacrosse Federation - ILF Codice CIO ITA Colori azzurro Soprannome Azzurri, Italia Lax Record presenze Andrea Lubrano (34) Capocannoniere Steven Whitford (69) Ranking FIL 18° Esordio internazionale Irlanda 13 - 1 Italia (Praga, Repubblica Ceca; 2004) Migliore vittoria Italia 20 - 0 Hong Kong (London, Canada; 16 luglio 2006) Peggiore sconfitta Italia 3 - 17 Repubblica Ceca (Manchester, ...

 

Suèdeau Concours Eurovision 1962 Inger Berggren représentant la Suède avec la chanson Sol och vår au Concours Eurovision de la chanson 1962 à Luxembourg. Données clés Pays  Suède Chanson Sol och vår Interprète Inger Berggren Compositeur Åke Gerhard (en) Parolier Ulf Källqvist Langue Suédois Sélection nationale Radiodiffuseur Sveriges Radio (SR) Type de sélection Finale nationaleÉmission télévisée Date 13 février 1962 Lieu Stockholm Concours Eurovision de la chan...

 

Medical command within the U.S. Army Reserve Command 3rd Medical Command (Deployment Support)Shoulder sleeve insigniaActive5 May 1942-6 October 1945 15 March 1991 – PresentCountryUnited StatesAllegianceUS Army ReserveBranchU.S. ArmyReserve CenterForest Park, GeorgiaNickname(s)”Desert Medics[1]Motto(s)Frontline SurgeonsMedical Corps colorsMaroon and WhiteEngagementsWorld War IIOperation Desert StormOperation Iraqi FreedomOperation Freedom SentinelCommandersCurrentcommanderMG Joseph...

County in Kansas, United States Not to be confused with Allen, Kansas. County in KansasAllen CountyCountyOld Allen County Jail in Iola (2008)Location within the U.S. state of KansasKansas's location within the U.S.Coordinates: 37°53′N 95°17′W / 37.883°N 95.283°W / 37.883; -95.283Country United StatesState KansasFoundedAugust 25, 1855Named forWilliam AllenSeatIolaLargest cityIolaArea • Total505 sq mi (1,310 km2) • ...

 

Chiesa di Saint-Philippe-du-RouleÉglise Saint-Philippe-du-RouleFacciata della chiesaStato Francia RegioneÎle-de-France LocalitàParigi Indirizzo154 rue du Faubourg-Saint-Honoré, 75008 Paris Coordinate48°52′24.08″N 2°18′38.01″E / 48.873356°N 2.310557°E48.873356; 2.310557Coordinate: 48°52′24.08″N 2°18′38.01″E / 48.873356°N 2.310557°E48.873356; 2.310557 Religionecattolica di rito romano TitolareFilippo Arcidiocesi Parigi ArchitettoJ...

 

Ute

Para otros usos de este término, véase UTE (desambiguación). Ute Ubicación  Estados UnidosDescendencia ~ 10 000Idioma Inglés y UteReligión CristianismoEtnias relacionadas Grupos étnicos Uto-Aztecas[editar datos en Wikidata] Los ute, uta o yutas son una tribu india norteamericana cuyo idioma pertenece a la familia lingüística uto-azteca; son un grupo númico meridional, cuyo nombre proviene de entaw o yuta, “protectores de las montañas”. Ellos, sin embargo, s...

Adinia WirastiAdinia saat diwawancarai oleh Narasi pada bulan September 2020LahirAdinia Wirasti Wijayanto19 Januari 1987 (umur 37)Jakarta, IndonesiaKebangsaanIndonesiaAlmamaterAkademi Film New YorkPekerjaanPemeranmodelTahun aktif2001—sekarangSuami/istriMichael Wahr ​(m. 2023)​Anak-Keluarga Sara Wijayanto (kakak) Demian Aditya (ipar) Adinia Wirasti Wijayanto (lahir 19 Januari 1987) adalah seorang pemeran dan model Indonesia. Ia adalah adik dari pemeran...

 

Abundant number whose proper divisors are all deficient numbers Euler diagram of numbers under 100:    Abundant    Primitive abundant    Highly abundant    Superabundant and highly composite    Colossally abundant and superior highly composite    Weird    Perfect    Composite    Deficient In mathematics a primitive abundant number is an abundant number whose proper divisors are all deficient numbers.[...

 

Voce principale: Bologna. Questa voce o sezione sull'argomento torri non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Panorama turrito di Bologna in una foto di Paolo Monti del 1965. Le torri di Bologna, strutture con funzione sia militare sia gentilizia di origine medievale, sono uno dei tratti più caratteristici della città. Delle torri presenti in an...

  提示:此条目页的主题不是河南警察学院。 此條目需要补充更多来源。 (2022年4月3日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:郑州警察学院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 郑州警察学院Zhengzhou Po...

 

Yevgeny PrigozhinЕвгений Пригожин Pemimpin Grup WagnerMasa jabatanFebruari 2014 – 23 Agustus 2023WakilMikhail MizintsevKomandan militerDmitry UtkinPenggantiPavel Prigozhin Informasi pribadiLahirYevgeny Viktorovich Prigozhin (Евгений Викторович Пригожин)(1961-06-01)1 Juni 1961Leningrad, SFS Rusia, Uni SovietMeninggal23 Agustus 2023(2023-08-23) (umur 62)Kuzhenkino, Distrik Bologovsky, Oblast Tver, RusiaSuami/istriLyubov Valentinovna Prigoz...

 

Financial market Part of a series onCapitalism Concepts Austerity Business Business cycle Businessperson Capital Capital accumulation Capital markets Company Corporation Competitive markets Economic interventionism Economic liberalism Economic surplus Entrepreneurship Fictitious capital Financial market Free price system Free market Goods and services Investor Invisible hand Visible hand Liberalization Marginalism Money Private property Privatization Profit Rent seeking Supply and demand Surp...

Campionato europeo di pallanuoto 1970maschile Competizione Campionato europeo di pallanuoto Sport Pallanuoto Edizione XII Organizzatore LEN Date 4 - 12 settembre Luogo  SpagnaBarcellona Partecipanti 15 Formula Due fasi a gironi Impianto/i Piscinas Bernat Picornell Risultati Oro Unione Sovietica(2º titolo) Argento Ungheria Bronzo Jugoslavia Statistiche Miglior marcatore Ferenc Konrád (20 reti) Incontri disputati 57 Gol segnati 580 (10,18 per incontro) Cronologia della competi...

 

Shopping mall in Maumee, OhioThe Shops at Fallen TimbersPart of the shopping center on Main & Elm StreetLocationMaumee, OhioCoordinates41°32′50″N 83°42′22″W / 41.547222°N 83.706111°W / 41.547222; -83.706111Address3100 Main St.Opening dateOctober 2007; 16 years ago (2007-10)DeveloperGeneral Growth PropertiesManagementMason Asset Management & Namdar Realty GroupOwnerMason Asset Management & Namdar Realty GroupNo. of stores a...