In addition to being seen as an autoencoder neural network architecture, variational autoencoders can also be studied within the mathematical formulation of variational Bayesian methods, connecting a neural encoder network to its decoder through a probabilistic latent space (for example, as a multivariate Gaussian distribution) that corresponds to the parameters of a variational distribution.
Thus, the encoder maps each point (such as an image) from a large complex dataset into a distribution within the latent space, rather than to a single point in that space. The decoder has the opposite function, which is to map from the latent space to the input space, again according to a distribution (although in practice, noise is rarely added during the decoding stage). By mapping a point to a distribution instead of a single point, the network can avoid overfitting the training data. Both networks are typically trained together with the usage of the reparameterization trick, although the variance of the noise model can be learned separately.[citation needed]
A variational autoencoder is a generative model with a prior and noise distribution respectively. Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA, (spike & slab) sparse coding). Such a scheme optimizes a lower bound of the data likelihood, which is usually intractable, and in doing so requires the discovery of q-distributions, or variational posteriors. These q-distributions are normally parameterized for each individual data point in a separate optimization process. However, variational autoencoders use a neural network as an amortized approach to jointly optimize across data points. This neural network takes as input the data points themselves, and outputs parameters for the variational distribution. As it maps from a known input space to the low-dimensional latent space, it is called the encoder.
The decoder is the second neural network of this model. It is a function that maps from the latent space to the input space, e.g. as the means of the noise distribution. It is possible to use another neural network that maps to the variance, however this can be omitted for simplicity. In such a case, the variance can be optimized with gradient descent.
To optimize this model, one needs to know two terms: the "reconstruction error", and the Kullback–Leibler divergence (KL-D). Both terms are derived from the free energy expression of the probabilistic model, and therefore differ depending on the noise distribution and the assumed prior of the data. For example, a standard VAE task such as IMAGENET is typically assumed to have a gaussianly distributed noise; however, tasks such as binarized MNIST require a Bernoulli noise. The KL-D from the free energy expression maximizes the probability mass of the q-distribution that overlaps with the p-distribution, which unfortunately can result in mode-seeking behaviour. The "reconstruction" term is the remainder of the free energy expression, and requires a sampling approximation to compute its expectation value.[8]
From the point of view of probabilistic modeling, one wants to maximize the likelihood of the data by their chosen parameterized probability distribution . This distribution is usually chosen to be a Gaussian which is parameterized by and respectively, and as a member of the exponential family it is easy to work with as a noise distribution. Simple distributions are easy enough to maximize, however distributions where a prior is assumed over the latents results in intractable integrals. Let us find via marginalizing over .
where represents the joint distribution under of the observable data and its latent representation or encoding . According to the chain rule, the equation can be rewritten as
In the vanilla variational autoencoder, is usually taken to be a finite-dimensional vector of real numbers, and to be a Gaussian distribution. Then is a mixture of Gaussian distributions.
It is now possible to define the set of the relationships between the input data and its latent representation as
Prior
Likelihood
Posterior
Unfortunately, the computation of is expensive and in most cases intractable. To speed up the calculus to make it feasible, it is necessary to introduce a further function to approximate the posterior distribution as
with defined as the set of real values that parametrize . This is sometimes called amortized inference, since by "investing" in finding a good , one can later infer from quickly without doing any integrals.
In this way, the problem is to find a good probabilistic autoencoder, in which the conditional likelihood distribution is computed by the probabilistic decoder, and the approximated posterior distribution is computed by the probabilistic encoder.
As in every deep learning problem, it is necessary to define a differentiable loss function in order to update the network weights through backpropagation.
For variational autoencoders, the idea is to jointly optimize the generative model parameters to reduce the reconstruction error between the input and the output, and to make as close as possible to . As reconstruction loss, mean squared error and cross entropy are often used.
As distance loss between the two distributions the Kullback–Leibler divergence is a good choice to squeeze under .[8][9]
The distance loss just defined is expanded as
Now define the evidence lower bound (ELBO):Maximizing the ELBOis equivalent to simultaneously maximizing and minimizing . That is, maximizing the log-likelihood of the observed data, and minimizing the divergence of the approximate posterior from the exact posterior .
The form given is not very convenient for maximization, but the following, equivalent form, is:where is implemented as , since that is, up to an additive constant, what yields. That is, we model the distribution of conditional on to be a Gaussian distribution centered on . The distribution of and are often also chosen to be Gaussians as and , with which we obtain by the formula for KL divergence of Gaussians:Here is the dimension of . For a more detailed derivation and more interpretations of ELBO and its maximization, see its main page.
Reparameterization
To efficiently search for the typical method is gradient ascent.
It is straightforward to findHowever, does not allow one to put the inside the expectation, since appears in the probability distribution itself. The reparameterization trick (also known as stochastic backpropagation[10]) bypasses this difficulty.[8][11][12]
The most important example is when is normally distributed, as .
Since we reparametrized , we need to find . Let be the probability density function for , then [clarification needed]where is the Jacobian matrix of with respect to . Since , this is
Variations
Many variational autoencoders applications and extensions have been used to adapt the architecture to other domains and improve its performance.
-VAE is an implementation with a weighted Kullback–Leibler divergence term to automatically discover and interpret factorised latent representations. With this implementation, it is possible to force manifold disentanglement for values greater than one. This architecture can discover disentangled latent factors without supervision.[13][14]
The conditional VAE (CVAE), inserts label information in the latent space to force a deterministic constrained representation of the learned data.[15]
Some structures directly deal with the quality of the generated samples[16][17] or implement more than one latent space to further improve the representation learning.
After the initial work of Diederik P. Kingma and Max Welling.[21] several procedures were
proposed to formulate in a more abstract way the operation of the VAE. In these approaches the loss function is composed of two parts :
the usual reconstruction error part which seeks to ensure that the encoder-then-decoder mapping is as close to the identity map as possible; the sampling is done at run time from the empirical distribution of objects available (e.g., for MNIST or IMAGENET this will be the empirical probability law of all images in the dataset). This gives the term: .
a variational part that ensures that, when the empirical distribution is passed through the encoder , we recover the target distribution, denoted here that is usually taken to be a Multivariate normal distribution. We will denote this pushforward measure which in practice is just the empirical distribution obtained by passing all dataset objects through the encoder . In order to make sure that is close to the target , a Statistical distance is invoked and the term is added to the loss.
We obtain the final formula for the loss:
The statistical distance requires special properties, for instance is has to be posses a formula as expectation because the loss function will need to be optimized by stochastic optimization algorithms. Several distances can be chosen and this gave rise to several flavors of VAEs:
the sliced Wasserstein distance used by S Kolouri, et al. in their VAE[22]
the energy distance implemented in the Radon Sobolev Variational Auto-Encoder[23]
^Dilokthanakul, Nat; Mediano, Pedro A. M.; Garnelo, Marta; Lee, Matthew C. H.; Salimbeni, Hugh; Arulkumaran, Kai; Shanahan, Murray (2017-01-13). "Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders". arXiv:1611.02648 [cs.LG].
^Kolouri, Soheil; Pope, Phillip E.; Martin, Charles E.; Rohde, Gustavo K. (2019). "Sliced Wasserstein Auto-Encoders". International Conference on Learning Representations. International Conference on Learning Representations. ICPR.
^Gretton, A.; Li, Y.; Swersky, K.; Zemel, R.; Turner, R. (2017). "A Polya Contagion Model for Networks". IEEE Transactions on Control of Network Systems. 5 (4): 1998–2010. arXiv:1705.02239. doi:10.1109/TCNS.2017.2781467.
Kingma, Diederik P.; Welling, Max (2019). "An Introduction to Variational Autoencoders". Foundations and Trends in Machine Learning. 12 (4). Now Publishers: 307–392. arXiv:1906.02691. doi:10.1561/2200000056. ISSN1935-8237.
Artikel ini bukan mengenai keiretsu Mitsubishi. Mitsubishi CorporationGedung Marunouchi Park, kantor pusat Mitsubishi Corporation di Marunouchi, Chiyoda, Tokyo.Nama asli三菱商事株式会社Nama latinMitsubishi Shōji Kabushiki-gaishaSebelumnyaKowa Jitsugyo KaishaMitsubishi ShojiJenisPublik (K.K)Kode emitenTYO: 8058LSE: MBCTOPIX Core 30 ComponentIndustriPerusahaaan dagangDidirikanDidirikan pada tahun 1918Didirikan kembali pada tahun 1954KantorpusatMarunouchi, Chiyoda, Tokyo, JepangCabang22...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: The Duck Variations – news · newspapers · books · scholar · JSTOR (August 2011) The Duck Variations is a 1972 play by American playwright David Mamet. The play depicts a discussion taking place between two elderly men sitting on a park bench watching ...
Minesweeper of the United States Navy For other ships with the same name, see USS Plover. History United States NameUSS YMS-442 Builder C. Hiltebrant Dry Dock Co. Kingston, New York Laid down12 October 1943 Launched20 April 1944 Commissioned14 October 1944 RenamedUSS Plover (AMS-33), 18 February 1947 Identificationidentification=Call sign: NCLI ReclassifiedMCS(O)-33, 18 February 1947 Stricken1 October 1968 FateUnknown General characteristics Class and typeYMS-135 subclass of YMS-1-class mines...
Cet article est une ébauche concernant un coureur cycliste danois. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Alexander KampInformationsNom de naissance Alexander Kamp EgestedNaissance 14 décembre 1993 (30 ans)KøgeNationalité danoiseÉquipe actuelle Tudor Pro Cycling TeamÉquipes non-UCI 2002-2005CC95 Herfølge2006-2007Roskilde Cykle Ring2008-2009Køge Cykel Ring2010-2011Herning Cykle KlubÉquipes...
Lockheed P-7 adalah pesawat patroli bermesin turboprop empat sayap rendah (low wing) dipesan oleh Angkatan Laut Amerika Serikat sebagai pengganti P-3 Orion. Konfigurasi eksternal pesawat bermesin turboprop itu menjadi sangat mirip dengan P-3. Pembangunan tidak berkembang sangat banyak sebelum pembangunan dibatalkan pada awal 1990-an sebagai ukuran pemotongan biaya setelah berakhirnya Perang Dingin. Referensi lbsPesawat Lockheed dan Lockheed MartinDaftar Pesawat dan Sebutan Produsen Nomor Mod...
ويغلند الإحداثيات 52°59′10″N 2°45′14″W / 52.986°N 2.754°W / 52.986; -2.754 [1] تقسيم إداري البلد المملكة المتحدة[2] معلومات أخرى SY14 رمز الهاتف 01948 رمز جيونيمز 7299963 تعديل مصدري - تعديل ويغلند (بالإنجليزية: Wigland) هي قرية و أبرشية مدنية تقع في المم�...
445th BattalionViet Cong soldiers, believed to be from D445 BattalionAllegiance Viet CongBranchNational Liberation Front for Southern VietnamTypeInfantryRoleGuerillaSize350 menEngagementsVietnam War Battle of Long Tan Battle of Ap My An Battle of Hat Dich Battle of Long Khanh Battle of Ba Ria Military unit The 445th Battalion (D445 for short), also known as the D445 Provincial Mobile Battalion or the Ba Ria Battalion, was a local force battalion of the Viet Cong (VC) during the Vietnam War. H...
Peta menunjukkan lokasi Luba. Luba adalah munisipalitas yang terletak di provinsi Abra, Filipina. Pada tahun 2011, munisipalitas ini memiliki populasi sebesar 6.911 jiwa atau 1.316 rumah tangga.[1] Pembagian wilayah Luba terbagi menjadi 8 barangay, yaitu: Barangay Penduduk (2007) Ampalioc 1,127 Barit 589 Gayaman 1,028 Lul-luno 394 Luzong 893 Nagbukel-Tuquipa 573 Poblacion 1,100 Sabnangan 659 Referensi ^ Local Governance Performance Management System. Diarsipkan dari versi asli tanggal...
Факультет педагогічної освіти Львівського національного університету імені Івана Франка Герб факультету педагогічної освіти Скорочена назва Факультет педагогічної освіти Львівського університету Основні дані Засновано 2015 Приналежність Львівський національний ун�...
Sîn-kāšidRaja UrukKerucut tanah liat yang bertuliskan “Sîn-kāšid, raja perkasa, kerajaan yang dibangunnya,” dari the Walters Art Museum, Baltimore.Berkuasaskt. 1803–1770 SMPendahulu? Ikūn-pî-IštarPenerusSîn-irībamSin-kāšid, tertulis dEN.ZU-ka-ši-id, merupakan seorang raja kota kuno Mesopotamia, Uruk selama paruh pertama abad ke-18 SM. Tanggal tepatnya tidak pasti, mungkin skt. 1803-1770 SM (kronologi pendek) sesuai dengan skt.1865-1833 SM (kronologi tengah), namun kemungki...
Kontraktor Kontrak Kerja Sama (KKKS) adalah pihak yang memiliki Kontrak Kerja Sama dengan Pemerintah RI (SKK Migas), merupakan Badan Usaha Tetap atau Perusahaan Pemegang Hak Pengelolaan dalam suatu Blok atau Wilayah Kerja yang memiliki hak untuk melakukan kegiatan eksplorasi, eksploitasi minyak dan gas bumi di Indonesia. Kontrak Kerja Sama Kontrak Kerja Sama adalah Kontrak Bagi Hasil atau bentuk kontrak kerja sama lain dalam kegiatan Eksplorasi dan Eksploitasi. Jangka waktu Kontrak Kerja Sama...
American rock band Eric Kretz redirects here. Not to be confused with Erik Kratz. Stone Temple PilotsStone Temple Pilots' original lineup in Manila, Philippines, on March 9, 2011. From left to right: Dean DeLeo, Scott Weiland, Eric Kretz, and Robert DeLeo.Background informationAlso known as STP Mighty Joe Young Swing OriginSan Diego, California, U.S.Genres Alternative rock grunge hard rock alternative metal DiscographyStone Temple Pilots discographyYears active 1989–2003 2008–present Lab...
British politician (born 1947) The Right HonourableThe Lord Carrington of FulhamOfficial portrait, 2022Member of the House of LordsLord TemporalIncumbentAssumed office 11 September 2013Life peerageAssistant Government Whip(HM Treasury)In officeDecember 1996 – May 1997Prime MinisterJohn MajorMember of Parliament for FulhamIn office11 June 1987 – 8 April 1997Preceded byNick RaynsfordSucceeded byConstituency abolished Personal detailsBorn (1947-10-19) 19 October 1947 (a...
Virginiauhu Virginiauhu (Bubo virginianus) Systematik Klasse: Vögel (Aves) Ordnung: Eulen (Strigiformes) Familie: Eigentliche Eulen (Strigidae) Gattung: Uhus (Bubo) Art: Virginiauhu Wissenschaftlicher Name Bubo virginianus (Gmelin, JF, 1788) Porträt eines Virginiauhus Der Virginiauhu (Bubo virginianus), oder Virginia-Uhu, auch Amerikanischer Uhu oder Virginischer Uhu genannt, ist eine Vogelart aus der Gattung der Uhus (Bubo), die zur Familie der Eigentlichen Eulen (Strigidae) und zur Ordnu...
Questa voce sull'argomento calciatori messicani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. José Guadalupe MartínezNazionalità Messico Altezza190 cm Peso80 kg Calcio RuoloPortiere Termine carriera2018 CarrieraSquadre di club1 2002-2004 Tecos de la UAG31 (-?)2005-2006 Club Tijuana33 (-?)2006-2007 Tecos de la UAG0 (0)2007-2008 Puebla18 (-?)2008-2010 Querétaro46 (-?)2...
American musician and actor (1921–2003) Sheb WooleyWooley in 1971BornShelby Fredrick Wooley(1921-04-10)April 10, 1921Erick, Oklahoma, U.S.DiedSeptember 16, 2003(2003-09-16) (aged 82)Nashville, Tennessee, U.S.Other namesBen ColderOccupationsSingersongwriteractorcomedianYears active1936–1999Musical careerGenresCountrynoveltycomedypoprock and rollWestern swingLabelsMGM Musical artist Shelby Fredrick Wooley (April 10, 1921 – September 16, 2003) was an American singer, songwri...
Cet article est une ébauche concernant la Bresse et une commune de l’Ain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Malafretaz Église Saint-Marc. Logo Administration Pays France Région Auvergne-Rhône-Alpes Département Ain Arrondissement Bourg-en-Bresse Intercommunalité Communauté d'agglomération du Bassin de Bourg-en-Bresse Maire Mandat Gary Leroux 2020-2026 Code postal 01340 Code commune 01229 D...