Mean shift

Mean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm.[1] Application domains include cluster analysis in computer vision and image processing.[2]

History

The mean shift procedure is usually credited to work by Fukunaga and Hostetler in 1975.[3] It is, however, reminiscent of earlier work by Schnell in 1964.[4]

Overview

Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function.[1] This is an iterative method, and we start with an initial estimate . Let a kernel function be given. This function determines the weight of nearby points for re-estimation of the mean. Typically a Gaussian kernel on the distance to the current estimate is used, . The weighted mean of the density in the window determined by is

where is the neighborhood of , a set of points for which .

The difference is called mean shift in Fukunaga and Hostetler.[3] The mean-shift algorithm now sets , and repeats the estimation until converges.

Although the mean shift algorithm has been widely used in many applications, a rigid proof for the convergence of the algorithm using a general kernel in a high dimensional space is still not known.[5] Aliyari Ghassabeh showed the convergence of the mean shift algorithm in one dimension with a differentiable, convex, and strictly decreasing profile function.[6] However, the one-dimensional case has limited real world applications. Also, the convergence of the algorithm in higher dimensions with a finite number of the stationary (or isolated) points has been proved.[5][7] However, sufficient conditions for a general kernel function to have finite stationary (or isolated) points have not been provided.

Gaussian Mean-Shift is an Expectation–maximization algorithm.[8]

Details

Let data be a finite set embedded in the -dimensional Euclidean space, . Let be a flat kernel that is the characteristic function of the -ball in ,

In each iteration of the algorithm, is performed for all simultaneously. The first question, then, is how to estimate the density function given a sparse set of samples. One of the simplest approaches is to just smooth the data, e.g., by convolving it with a fixed kernel of width ,

where are the input samples and is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this "brute force" approach is that, for higher dimensions, it becomes computationally prohibitive to evaluate over the complete search space. Instead, mean shift uses a variant of what is known in the optimization literature as multiple restart gradient descent. Starting at some guess for a local maximum, , which can be a random input data point , mean shift computes the gradient of the density estimate at and takes an uphill step in that direction.[9]

Types of kernels

Kernel definition: Let be the -dimensional Euclidean space, . The norm of is a non-negative number, . A function is said to be a kernel if there exists a profile, , such that

and

  • k is non-negative.
  • k is non-increasing: if .
  • k is piecewise continuous and

The two most frequently used kernel profiles for mean shift are:

Flat kernel

Gaussian kernel

where the standard deviation parameter works as the bandwidth parameter, .

Applications

Clustering

Consider a set of points in two-dimensional space. Assume a circular window centered at and having radius as the kernel. Mean-shift is a hill climbing algorithm which involves shifting this kernel iteratively to a higher density region until convergence. Every shift is defined by a mean shift vector. The mean shift vector always points toward the direction of the maximum increase in the density. At every iteration the kernel is shifted to the centroid or the mean of the points within it. The method of calculating this mean depends on the choice of the kernel. In this case if a Gaussian kernel is chosen instead of a flat kernel, then every point will first be assigned a weight which will decay exponentially as the distance from the kernel's center increases. At convergence, there will be no direction at which a shift can accommodate more points inside the kernel.

Tracking

The mean shift algorithm can be used for visual tracking. The simplest such algorithm would create a confidence map in the new image based on the color histogram of the object in the previous image, and use mean shift to find the peak of a confidence map near the object's old position. The confidence map is a probability density function on the new image, assigning each pixel of the new image a probability, which is the probability of the pixel color occurring in the object in the previous image. A few algorithms, such as kernel-based object tracking,[10] ensemble tracking,[11] CAMshift [12][13] expand on this idea.

Smoothing

Let and be the -dimensional input and filtered image pixels in the joint spatial-range domain. For each pixel,

  • Initialize and
  • Compute according to until convergence, .
  • Assign . The superscripts s and r denote the spatial and range components of a vector, respectively. The assignment specifies that the filtered data at the spatial location axis will have the range component of the point of convergence .

Strengths

  1. Mean shift is an application-independent tool suitable for real data analysis.
  2. Does not assume any predefined shape on data clusters.
  3. It is capable of handling arbitrary feature spaces.
  4. The procedure relies on choice of a single parameter: bandwidth.
  5. The bandwidth/window size 'h' has a physical meaning, unlike k-means.

Weaknesses

  1. The selection of a window size is not trivial.
  2. Inappropriate window size can cause modes to be merged, or generate additional “shallow” modes.
  3. Often requires using adaptive window size.

Availability

Variants of the algorithm can be found in machine learning and image processing packages:

  • ELKI. Java data mining tool with many clustering algorithms.
  • ImageJ. Image filtering using the mean shift filter.
  • mlpack. Efficient dual-tree algorithm-based implementation.
  • OpenCV contains mean-shift implementation via cvMeanShift Method
  • Orfeo toolbox. A C++ implementation.
  • scikit-learn Numpy/Python implementation uses ball tree for efficient neighboring points lookup

See also

References

  1. ^ a b Cheng, Yizong (August 1995). "Mean Shift, Mode Seeking, and Clustering". IEEE Transactions on Pattern Analysis and Machine Intelligence. 17 (8): 790–799. CiteSeerX 10.1.1.510.1222. doi:10.1109/34.400568.
  2. ^ Comaniciu, Dorin; Peter Meer (May 2002). "Mean Shift: A Robust Approach Toward Feature Space Analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 24 (5): 603–619. CiteSeerX 10.1.1.160.3832. doi:10.1109/34.1000236. S2CID 691081.
  3. ^ a b Fukunaga, Keinosuke; Larry D. Hostetler (January 1975). "The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition". IEEE Transactions on Information Theory. 21 (1): 32–40. doi:10.1109/TIT.1975.1055330.
  4. ^ Schnell, P. (1964). "Eine Methode zur Auffindung von Gruppen". Biometrische Zeitschrift (in German). 6 (1): 47–48. doi:10.1002/bimj.19640060105.
  5. ^ a b Aliyari Ghassabeh, Youness (2015-03-01). "A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel". Journal of Multivariate Analysis. 135: 1–10. doi:10.1016/j.jmva.2014.11.009.
  6. ^ Aliyari Ghassabeh, Youness (2013-09-01). "On the convergence of the mean shift algorithm in the one-dimensional space". Pattern Recognition Letters. 34 (12): 1423–1427. arXiv:1407.2961. Bibcode:2013PaReL..34.1423A. doi:10.1016/j.patrec.2013.05.004. S2CID 10233475.
  7. ^ Li, Xiangru; Hu, Zhanyi; Wu, Fuchao (2007-06-01). "A note on the convergence of the mean shift". Pattern Recognition. 40 (6): 1756–1762. Bibcode:2007PatRe..40.1756L. doi:10.1016/j.patcog.2006.10.016.
  8. ^ Carreira-Perpinan, Miguel A. (May 2007). "Gaussian Mean-Shift Is an EM Algorithm". IEEE Transactions on Pattern Analysis and Machine Intelligence. 29 (5): 767–776. doi:10.1109/tpami.2007.1057. ISSN 0162-8828. PMID 17356198. S2CID 6694308.
  9. ^ Richard Szeliski, Computer Vision, Algorithms and Applications, Springer, 2011
  10. ^ Comaniciu, Dorin; Visvanathan Ramesh; Peter Meer (May 2003). "Kernel-based Object Tracking". IEEE Transactions on Pattern Analysis and Machine Intelligence. 25 (5): 564–575. CiteSeerX 10.1.1.8.7474. doi:10.1109/tpami.2003.1195991. S2CID 823678.
  11. ^ Avidan, Shai (2005). "Ensemble Tracking". 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 2. San Diego, California: IEEE. pp. 494–501. doi:10.1109/CVPR.2005.144. ISBN 978-0-7695-2372-9. PMID 17170479. S2CID 1638397.
  12. ^ Gary Bradski (1998) Computer Vision Face Tracking For Use in a Perceptual User Interface Archived 2012-04-17 at the Wayback Machine, Intel Technology Journal, No. Q2.
  13. ^ Emami, Ebrahim (2013). "Online failure detection and correction for CAMShift tracking algorithm". 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP). Vol. 2. IEEE. pp. 180–183. doi:10.1109/IranianMVIP.2013.6779974. ISBN 978-1-4673-6184-2. S2CID 15864761.

Read other articles:

Kawasan kumuh di kota-kota besar duniaDhaka, BangladeshSão Paulo, BrasilKairo, MesirNairobi, KenyaKota Meksiko, MeksikoJakarta, IndonesiaCape Town, Afrika SelatanMumbai, IndiaCaracas, Venezuela Populasi perkotaan yang hidup di kawasan kumuh pada tahun 2001.   0-10%   10-20%   20-30%   30-40%   40-50%   50-60%   60-70%   70-80%   80-90%   90-100%   No data Seorang anak di tempat pembu...

 

Radio station in Iowa Park, TexasKXXNIowa Park, TexasBroadcast areaWichita Falls metropolitan areaFrequency97.5 MHzBrandingBig Country 97.5ProgrammingFormatClassic CountryOwnershipOwnerFalls Media, LLCSister stationsKWFBHistoryFirst air date2009 (at 96.3)Former frequencies96.3 MHz (2009-2018)Technical informationFacility ID165970ClassC2ERP37,500 wattsHAAT111.3 metersLinksWebsitebigcountry975.com KXXN (branded as Big Country 97.5) is a radio station serving Wichita Falls, Texas and Vicinity wi...

 

Lambang kota La Louvière La Louvière merupakan sebuah kota di Belgia. Kota ini letaknya di bagian selatan. Tepatnya di region Walonia. Pada tahun 2010, kota ini memiliki jumlah penduduk sebesar 78.071 jiwa dan memiliki luas wilayah 64,24 km². Kota ini memiliki angka kepadatan penduduk 1.200 jiwa/km². Pranala luar Wikimedia Commons memiliki media mengenai La Louvière. Situs resmi Site of the Centre region Diarsipkan 2007-01-18 di Wayback Machine., in French Photographies of the Duferco st...

Rebecca Latimer Felton Senator Amerika Serikat dari GeorgiaMasa jabatan21 November 1922 – 22 November 1922Ditunjuk olehThomas W. HardwickPendahuluThomas E. WatsonPenggantiWalter F. George Informasi pribadiLahirRebecca Ann Latimer(1835-06-10)10 Juni 1835Decatur, Georgia, ASMeninggal24 Januari 1930(1930-01-24) (umur 94)Atlanta, Georgia, ASPartai politikDemokratSuami/istriWilliam Harrell FeltonPendidikanMadison Female CollegeSunting kotak info • L • B Rebecca Ann La...

 

Italian composer Tarquinio MerulaBackground informationBorn(1595-11-24)24 November 1595Busseto, ItalyDied10 December 1665(1665-12-10) (aged 70)Cremona, ItalyGenresBaroqueOccupation(s)Composer, organist, violinistInstrument(s)OrganviolinYears active1616–1665Musical artist Tarquinio Merula (24 November 1595 – 10 December 1665) was an Italian composer, organist, and violinist of the early Baroque era. Although mainly active in Cremona, stylistically he was a member of the Venetian schoo...

 

Melaka Historic City Council Majlis Bandaraya Melaka BersejarahTypeTypeCity council of Malacca CityHistoryFounded15 April 1989Preceded byHistoric City of Malacca Municipal CouncilLeadershipMayorDatuk Hj. Shadan bin Hj. Othman City SecretaryAhmad Azlan bin Ahmad Salleh Meeting placeBangunan MBMB, Jalan Graha Makmur, Ayer Keroh, MalaccaWebsitewww.mbmb.gov.my Malacca City Council, officially known as the Melaka Historic City Council[1] (Malay: Majlis Bandaraya Melaka Bersejarah, MB...

NahuatlnāhuatlàtōlliParlato in Messico RegioniAmerica del Nord LocutoriTotale1.725.620 (2015) Classificanon nelle prime 100 Altre informazioniScritturaAlfabeto latino Tipopolisintetica TassonomiaFilogenesilingue uto-azteche Nahuatl Codici di classificazioneISO 639-2nah ISO 639-5nah Glottologazte1234 (EN) Estratto in linguaDichiarazione universale dei diritti umani, art. 1Nochi tlakamej uan siuamej kipiaj manoj kuali tlakatisej, nochi san se totlatechpouiltilis uan titlatepanitalo...

 

French sports journalist Jacques GoddetJacques Goddet in 1962Born(1905-06-21)21 June 1905Paris, FranceDied15 December 2000(2000-12-15) (aged 95)Paris, FranceNationalityFrenchOccupationSports journalistTitleDirector of the Tour de FranceTerm1935 – 1986PredecessorHenri DesgrangeSuccessorFélix Lévitan Jacques Goddet Memorial at Tourmalet Jacques Goddet (21 June 1905 – 15 December 2000) was a French sports journalist and director of the Tour de France road cycling race fro...

 

Untuk kabupaten dengan nama sama, lihat Kabupaten Alor. AlorPeta lokasi AlorKoordinat8°15′S 124°45′E / 8.250°S 124.750°E / -8.250; 124.750NegaraIndonesiaGugus kepulauanSunda kecilProvinsiNusa Tenggara TimurKabupatenAlorLuas2.119,7 km²Populasi- Alor adalah sebuah pulau yang terletak di ujung timur Kepulauan Nusa Tenggara. Luas wilayahnya 2.119 km², dan titik tertingginya 1.839 m. Pulau ini dibatasi oleh Laut Flores dan Laut Banda di sebelah utara, Se...

斯洛博丹·米洛舍维奇Слободан МилошевићSlobodan Milošević 南斯拉夫联盟共和国第3任总统任期1997年7月23日—2000年10月7日总理拉多耶·孔蒂奇莫米尔·布拉托维奇前任佐兰·利利奇(英语:Zoran Lilić)继任沃伊斯拉夫·科什图尼察第1任塞尔维亚总统任期1991年1月11日[注]—1997年7月23日总理德拉古京·泽莱诺维奇(英语:Dragutin Zelenović)拉多曼·博若维奇(英语:Radoman Bo...

 

French Olympic figure skater Morgan CiprèsCiprès at the 2019 Internationaux de FranceBorn (1991-04-24) 24 April 1991 (age 33)Melun, FranceHeight1.81 m (5 ft 11 in)Figure skating careerCountryFranceSkating clubCSG Dammarie-lès-LysBegan skating1995RetiredSeptember 29, 2020 Medal record Representing  France Figure skating: Pairs World Championships 2018 Milan Pairs European Championships 2019 Minsk Pairs 2017 Ostrava Pairs Grand Prix Final 2018–2019 Vancouver Pairs ...

 

Façade d'une maison à pans de bois et torchis du Porcien.Ferme du Parcot — murs en torchis (Dordogne). Torchis et clayonnage, Tanzanie. Le torchis est un matériau de remplissage non-porteur. C’est un béton naturel utilisé pour les murs et les cloisons dans les constructions à ossature en bois, mais aussi pour faire des plafonds. Une fois sec, il est résistant, mais assez sensible à l’humidité[1]. Description Traditionnellement, le torchis (mélange d’eau, de terre argile...

Dutch colonial governor (1704–1761) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2015) (Learn how and when to remove this message) Jacob MosselGovernor-General of the Dutch East IndiesIn office1 November 1750 – 15 May 1761Preceded byGustaaf Willem van ImhoffSucceeded byPetrus Albertus van der Parra Perso...

 

Swiss composer and music administrator Rolf LiebermannRolf Liebermann,by Claude Truong-Ngoc (1980)Born(1910-09-14)14 September 1910Zürich, SwitzerlandDied2 January 1999(1999-01-02) (aged 88)Paris, FranceOccupationComposerYears active1943–1999 Rolf Liebermann (14 September 1910 – 2 January 1999),[1] was a Swiss composer and music administrator. He served as the Artistic Director of the Hamburg State Opera from 1959 to 1973 and again from 1985 to 1988. He was also Artisti...

 

US Supreme Court justice from 1836 to 1841 Philip P. BarbourAssociate Justice of the Supreme Court of the United StatesIn officeMay 12, 1836 – February 25, 1841Nominated byAndrew JacksonPreceded byGabriel DuvallSucceeded byPeter V. DanielJudge of the United States District Court for the Eastern District of VirginiaIn officeOctober 8, 1830 – March 17, 1836Nominated byAndrew JacksonPreceded byGeorge HaySucceeded byPeter DanielChairman of the House Judiciary CommitteeIn off...

Luca Beltrami Senatore del Regno d'ItaliaLegislaturadalla XXII Tipo nominaCategoria: 3 Sito istituzionale Deputato del Regno d'ItaliaLegislaturaXVII, XVIII, XIX GruppoparlamentareLiberale conservatore CollegioMilano Sito istituzionale Dati generaliTitolo di studiolaurea in architettura civile UniversitàPolitecnico di Milano Professionearchitetto, docente universitario Firma «Facciamo un poco di economia nei richiami retorici alla grandezza della patria, alle sue memorie, a...

 

Outdoor warning sirens This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: SiraTone – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this message) SiraTone Electronic Outdoor Warning SirenA SiraTone model EOWS* 612 located in Lakewood, Ohio.TypeOutdoor warning sirenInve...

 

American bassist (born 1958) Jeff PilsonPilson performing with Foreigner in 2016.Background informationBirth nameJeffrey Steven PilsonBorn (1958-01-19) 19 January 1958 (age 66)[1][2][3]Lake Forest, Illinois, U.S.GenresHard rockheavy metalglam metalOccupation(s)MusiciansongwriteractorInstrument(s)Bass guitarkeyboardsvocalsguitarYears active1976–presentMember ofForeignerFormerly ofDokkenWild HorsesMSGDioT & NLynch MobThe End MachineBlack SwanWebsitejeffpilson...

American actress, dancer, and singer (1909–1952) For the franchised restaurant chain, see Dixie Lee Fried Chicken. Dixie LeeLee in 1935BornWilma Winifred Wyatt(1909-11-04)November 4, 1909Harriman, Tennessee, U.S.DiedNovember 1, 1952(1952-11-01) (aged 42)Los Angeles, California, U.S.Resting placeHoly Cross Cemetery, Culver City, CaliforniaOccupationsActressdancersingerYears active1929–1935Spouse Bing Crosby ​(m. 1930)​ChildrenGary Crosby Dennis Crosby...

 

American college basketball season 2021–22 Southeast Missouri State Redhawks men's basketballConferenceOhio Valley ConferenceRecord14–18 (8–9 OVC)Head coachBrad Korn (2nd season)Assistant coaches Keith Pickens Dustin Yoder Sam McMahon Home arenaShow Me CenterSeasons← 2020–212022–23 → 2021–22 Ohio Valley Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT No. 20 Murray State † 18 – 0   ...