Spiking neural network

The insect is controlled by a spiking neural network to find a target in an unknown terrain.

Spiking neural networks (SNNs) are artificial neural networks (ANN) that more closely mimic natural neural networks.[1] These models leverage timing of discrete spikes as the main information carrier.[2]

In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold. When the membrane potential reaches the threshold, the neuron fires, and generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in response to this signal. A neuron model that fires at the moment of threshold crossing is also called a spiking neuron model.[3]

Although it was previously believed that the brain encoded information through spike rates, which can be considered as the analogue variable output of a traditional ANN,[4] research in the field of neurobiology has indicated that high speed processing cannot solely be performed through a rate based scheme. For example humans can perform an image recognition task at rate requiring no more than 10ms of processing time per neuron through the successive layers (going from the retina to the temporal lobe). This time window is too short for a rate based encoding. The precise spike timings in a small set of spiking neurons also has a higher information coding capacity compared with a rate based approach.[5]

The most prominent spiking neuron model is the leaky integrate-and-fire model.[6] In the integrate-and-fire model, the momentary activation level (modeled as a differential equation) is normally considered to be the neuron's state, with incoming spikes pushing this value higher or lower, until the state eventually either decays or—if the firing threshold is reached—the neuron fires. After firing, the state variable is reset to a lower value.

Various decoding methods exist for interpreting the outgoing spike train as a real-value number, relying on either the frequency of spikes (rate-code), the time-to-first-spike after stimulation, or the interval between spikes.

History

Pulsed neuron model
Artificial synapses based on FTJs

Many multi-layer artificial neural networks are fully connected, receiving input from every neuron in the previous layer and signalling every neuron in the subsequent layer. Although these networks have achieved breakthroughs in many fields, they are biologically inaccurate and do not mimic the operation mechanism of neurons in the brain of a living thing.[citation needed]

The biologically inspired Hodgkin–Huxley model of a spiking neuron was proposed in 1952. This model describes how action potentials are initiated and propagated. Communication between neurons, which requires the exchange of chemical neurotransmitters in the synaptic gap, is described in various models, such as the integrate-and-fire model, FitzHugh–Nagumo model (1961–1962), and Hindmarsh–Rose model (1984). The leaky integrate-and-fire model (or a derivative) is commonly used as it is easier to compute than the Hodgkin–Huxley model.[7]

While the notion of an artificial spiking neural network became very popular only during the first quarter of the twenty-first century, [8][9][10] there are a number of studies between 1980 and 1995 that supported the concept and in which the first models of this type of artificial neural networks appeared to simulate non-algorithmic intelligent information processing systems.[11][12][13] However, the very notion of the spiking neural network as a mathematical model had already been worked on in the early 1970s.[14]

Underpinnings

Information in the brain is represented as action potentials (neuron spikes), which may be grouped into spike trains or even coordinated waves of brain activity. A fundamental question of neuroscience is to determine whether neurons communicate by a rate or temporal code.[15] Temporal coding suggests that a single spiking neuron can replace hundreds of hidden units on a sigmoidal neural net.[1]

An SNN computes in the continuous rather than the discrete domain. The idea is that neurons may not test for activation in every iteration of propagation (as is the case in a typical multilayer perceptron network), but only when their membrane potentials reach a certain value. When a neuron is activated, it produces a signal that is passed to connected neurons, raising or lowering their membrane potential.

In a spiking neural network, a neuron's current state is defined as its membrane potential (possibly modeled as a differential equation).[16] An input pulse causes the membrane potential to rise for a period of time and then gradually decline. Encoding schemes have been constructed to interpret these pulse sequences as a number, taking into account both pulse frequency and pulse interval. A neural network model based on pulse generation time can be established.[17] Using the exact time of pulse occurrence, a neural network can employ more information and offer better computing properties.[18]

The SNN approach produces a continuous output instead of the binary output of traditional artificial neural networks (ANNs). Pulse trains are not easily interpretable, hence the need for encoding schemes as above. However, a pulse train representation may be more suited for processing spatiotemporal data (or continual real-world sensory data classification).[19] SNNs consider space by connecting neurons only to nearby neurons so that they process input blocks separately (similar to CNN using filters). They consider time by encoding information as pulse trains so as not to lose information in a binary encoding. This avoids the additional complexity of a recurrent neural network (RNN). It turns out that impulse neurons are more powerful computational units than traditional artificial neurons.[20]

SNNs are theoretically more powerful than so called "second-generation networks" defined in[20] as "[ANNs] based on computational units that apply activation function with a continuous set of possible output values to a weighted sum (or polynomial) of the inputs; however, SNN training issues and hardware requirements limit their use. Although unsupervised biologically inspired learning methods are available such as Hebbian learning and STDP, no effective supervised training method is suitable for SNNs that can provide better performance than second-generation networks.[20] Spike-based activation of SNNs is not differentiable thus making it hard to develop gradient descent based training methods to perform error backpropagation.

SNNs have much larger computational costs for simulating realistic neural models than traditional ANNs.[21]

Pulse-coupled neural networks (PCNN) are often confused with SNNs. A PCNN can be seen as a kind of SNN.

Currently there are a few challenges when using SNNs that researchers are actively working on. The first challenge concerns the nondifferentiability of the spiking nonlinearity. The expressions for both the forward- and backward-learning methods contain the derivative of the neural activation function which is non-differentiable because neuron's output is either 1 when it spikes, and 0 otherwise. This all-or-nothing behavior of the binary spiking nonlinearity stops gradients from “flowing” and makes LIF neurons unsuitable for gradient-based optimization. The second challenge concerns the implementation of the optimization algorithm itself. Standard BP can be expensive in terms of computation, memory, and communication and may be poorly suited to the constraints dictated by the hardware that implements it (e.g., a computer, brain, or neuromorphic device).[22] Regarding the first challenge there are several approaches to resolving it. A few of them are:

  1. resorting to entirely biologically inspired local learning rules for the hidden units
  2. translating conventionally trained “rate-based” NNs to SNNs
  3. smoothing the network model to be continuously differentiable
  4. defining an SG (Surrogate Gradient) as a continuous relaxation of the real gradients

In the development of SNNs, incorporating additional neuron dynamics like Spike Frequency Adaptation (SFA) into neuron models marks a notable advance, enhancing both efficiency and computational power.[6][23] These neurons stand in between biological complexity and computational complexity.[24] Originating from biological insights, SFA offers significant computational benefits by reducing power usage through efficient coding,[25] especially in cases of repetitive or intense stimuli. This adaptation improves signal clarity against background noise and introduces an elementary short-term memory at the neuron level, which in turn, refines the accuracy and efficiency of information processing.[26] Recently, this phenomenon was mostly achieved using compartmental neuron models. The simpler versions are of neuron models with adaptive thresholds, an indirect way of achieving SFA. It equips SNNs with improved learning capabilities, even with constrained synaptic plasticity, and elevates computational efficiency.[27][28] This feature lessens the demand on network layers by decreasing the need for spike processing, thus cutting down on computational load and memory access time—essential aspects of neural computation. Moreover, SNNs utilizing neurons capable of SFA achieve levels of accuracy that rival those of conventional artificial neural networks, including those based on long short-term memory models,[29][30] while also requiring fewer neurons for comparable computational tasks. This efficiency not only streamlines the computational workflow but also conserves space and energy, offering a pragmatic step forward in the practical application of SNNs for complex computing tasks while maintaining a commitment to technical integrity.High-performance deep spiking neural networks with 0.3 spikes per neuron

Applications

SNNs can in principle be applied to the same applications as traditional ANNs.[31] In addition, SNNs can model the central nervous system of biological organisms, such as an insect seeking food without prior knowledge of the environment.[32] Due to their relative realism, they can be used to study the operation of biological neural circuits. Starting with a hypothesis about the topology of a biological neuronal circuit and its function, recordings of this circuit can be compared to the output of the corresponding SNN, evaluating the plausibility of the hypothesis. However, there is a lack of effective training mechanisms for SNNs, which can be inhibitory for some applications, including computer vision tasks.

As of 2019 SNNs lag behind ANNs in terms of accuracy, but the gap is decreasing, and has vanished on some tasks.[33]

When using SNNs for image based data, the images need to be converted into binary spike trains.[34] Types of encodings include:[35]

  • Temporal coding; generating one spike per neuron, in which spike latency is inversely proportional to the pixel intensity.
  • Rate coding: converting pixel intensity into a spike train, where the number of spikes is proportional to the pixel intensity.
  • Direct coding; using a trainable layer to generate a floating-point value for each time step. The layer converts each pixel at a certain time step into a floating-point value, and then a threshold is used on the generated floating-point values to pick either zero or one.
  • Phase coding; encoding temporal information into spike patterns based on a global oscillator.
  • Burst coding; transmitting a burst of spikes in a small time, increasing the reliability of synaptic communication between neurons.

However, Spiking Neural Networks are very sensitive to their parameters, like the membrane's threshold, decay rate, or slope of the sigmoid function that approximates the Heavyside step function to be differentiable. Some works performed optimizations to overcome the network's sensibility.[36]


Software

A diverse range of application software can simulate SNNs. This software can be classified according to its uses:

SNN simulation

Unsupervised learning with ferroelectric synapses

These simulate complex neural models with a high level of detail and accuracy. Large networks usually require lengthy processing. Candidates include:[37]

Hardware

Predicting STDP learning with ferroelectric synapses
Neuron-to-neuron mesh routing model

Future neuromorphic architectures[40] will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Experimental systems based on ferroelectric tunnel junctions have been used to show that STDP can be harnessed from heterogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, conductance variations can be modelled by nucleation-dominated reversal of domains. Simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning.[41]

Unsupervised learning with ferroelectric synapses
  • Akida is a completely digital event-based neural processing device with 1.2 million artificial neurons and 10 billion artificial synapses developed by BrainChip. Utilizing event-based possessing, it analyzes essential inputs at specific points. Results are stored in the on-chip memory units.
  • Neurogrid is a board that can simulate spiking neural networks directly in hardware. (Stanford University)
  • SpiNNaker (Spiking Neural Network Architecture) uses ARM processors as the building blocks of a massively parallel computing platform based on a six-layer thalamocortical model. (University of Manchester)[42] The SpiNNaker system is based on numerical models running in real time on custom digital multicore chips using the ARM architecture. It provides custom digital chips, each with eighteen cores and a shared local 128 Mbyte RAM, with a total of over 1,000,000 cores.[43] A single chip can simulate 16,000 neurons with eight million plastic synapses running in real time.[44]
  • TrueNorth is a processor that contains 5.4 billion transistors that consumes only 70 milliwatts; most processors in personal computers contain about 1.4 billion transistors and require 35 watts or more. IBM refers to the design principle behind TrueNorth as neuromorphic computing. Its primary purpose is pattern recognition. While critics say the chip isn't powerful enough, its supporters point out that this is only the first generation, and the capabilities of improved iterations will become clear. (IBM)[45]

Benchmarks

Classification capabilities of spiking networks trained according to unsupervised learning methods[46] have been tested on the common benchmark datasets, such as, Iris, Wisconsin Breast Cancer or Statlog Landsat dataset.[47][48] Various approaches to information encoding and network design have been used. For example, a 2-layer feedforward network for data clustering and classification. Based on the idea proposed in Hopfield (1995) the authors implemented models of local receptive fields combining the properties of radial basis functions (RBF) and spiking neurons to convert input signals (classified data) having a floating-point representation into a spiking representation.[49][50]

See also

References

  1. ^ a b Maass W (1997). "Networks of spiking neurons: The third generation of neural network models". Neural Networks. 10 (9): 1659–1671. doi:10.1016/S0893-6080(97)00011-7. ISSN 0893-6080.
  2. ^ Auge, Daniel; Hille, Julian; Mueller, Etienne; Knoll, Alois (2021-12-01). "A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks". Neural Processing Letters. 53 (6): 4693–4710. doi:10.1007/s11063-021-10562-2. ISSN 1573-773X.
  3. ^ Gerstner W, Kistler WM (2002). Spiking neuron models : single neurons, populations, plasticity. Cambridge, U.K.: Cambridge University Press. ISBN 0-511-07817-X. OCLC 57417395.
  4. ^ Wang, Xiangwen; Lin, Xianghong; Dang, Xiaochao (2020-05-01). "Supervised learning in spiking neural networks: A review of algorithms and evaluations". Neural Networks. 125: 258–280. doi:10.1016/j.neunet.2020.02.011. ISSN 0893-6080. PMID 32146356. S2CID 212638634.
  5. ^ Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Cosma, Georgina; Maguire, Liam P.; McGinnity, T. M. (2020-02-01). "A review of learning in biologically plausible spiking neural networks". Neural Networks. 122: 253–272. doi:10.1016/j.neunet.2019.09.036. ISSN 0893-6080. PMID 31726331. S2CID 207904985.
  6. ^ a b Ganguly, Chittotosh; Bezugam, Sai Sukruth; Abs, Elisabeth; Payvand, Melika; Dey, Sounak; Suri, Manan (2024-02-01). "Spike frequency adaptation: bridging neural models and neuromorphic applications". Communications Engineering. 3 (1): 22. doi:10.1038/s44172-024-00165-9. ISSN 2731-3395. PMC 11053160.
  7. ^ Lee D, Lee G, Kwon D, Lee S, Kim Y, Kim J (June 2018). "Flexon: A Flexible Digital Neuron for Efficient Spiking Neural Network Simulations". 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). pp. 275–288. doi:10.1109/isca.2018.00032. ISBN 978-1-5386-5984-7. S2CID 50778421.
  8. ^ Goodman, D. F., & Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers in neuroinformatics, 2, 350.
  9. ^ Vreeken, J. (2003). Spiking neural networks, an introduction
  10. ^ Yamazaki, K.; Vo-Ho, V. K.; Bulsara, D.; Le, N (30 June 2022). "Spiking neural networks and their applications: A review". Brain Sciences. 12 (7): 863. doi:10.3390/brainsci12070863. PMC 9313413. PMID 35884670.
  11. ^ Ballard, D. H. (1987, July). Modular learning in neural networks. In Proceedings of the sixth National conference on Artificial intelligence-Volume 1 (pp. 279-284).
  12. ^ Peretto, P. (1984). Collective properties of neural networks: a statistical physics approach. Biological cybernetics, 50(1), 51-62.
  13. ^ Kurogi, S. (1987). A model of neural network for spatiotemporal pattern recognition. Biological cybernetics, 57(1), 103-114.
  14. ^ Anderson, J. A. (1972). A simple neural network generating an interactive memory. Mathematical biosciences, 14(3-4), 197-220.
  15. ^ Gerstner W (2001). "Spiking Neurons". In Maass W, Bishop CM (eds.). Pulsed Neural Networks. MIT Press. ISBN 978-0-262-63221-8.
  16. ^ Hodgkin, A. L.; Huxley, A. F. (1952-08-28). "A quantitative description of membrane current and its application to conduction and excitation in nerve". The Journal of Physiology. 117 (4): 500–544. doi:10.1113/jphysiol.1952.sp004764. ISSN 0022-3751. PMC 1392413. PMID 12991237.
  17. ^ Dan, Yang; Poo, Mu-Ming (July 2006). "Spike Timing-Dependent Plasticity: From Synapse to Perception". Physiological Reviews. 86 (3): 1033–1048. doi:10.1152/physrev.00030.2005. ISSN 0031-9333. PMID 16816145.
  18. ^ Nagornov, Nikolay N.; Lyakhov, Pavel A.; Bergerman, Maxim V.; Kalita, Diana I. (2024). "Modern Trends in Improving the Technical Characteristics of Devices and Systems for Digital Image Processing". IEEE Access. 12: 44659–44681. Bibcode:2024IEEEA..1244659N. doi:10.1109/ACCESS.2024.3381493. ISSN 2169-3536.
  19. ^ Van Wezel M (2020). A robust modular spiking neural networks training methodology for time-series datasets: With a focus on gesture control (Master of Science thesis). Delft University of Technology.
  20. ^ a b c Maass W (1997). "Networks of spiking neurons: The third generation of neural network models". Neural Networks. 10 (9): 1659–1671. doi:10.1016/S0893-6080(97)00011-7.
  21. ^ Furber, Steve (August 2016). "Large-scale neuromorphic computing systems". Journal of Neural Engineering. 13 (5): 051001. Bibcode:2016JNEng..13e1001F. doi:10.1088/1741-2560/13/5/051001. ISSN 1741-2552. PMID 27529195.
  22. ^ Neftci, Emre O.; Mostafa, Hesham; Zenke, Friedemann (2019). "Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks". IEEE Signal Processing Magazine. 36 (6): 51–63. Bibcode:2019ISPM...36f..51N. doi:10.1109/msp.2019.2931595.
  23. ^ Salaj, Darjan; Subramoney, Anand; Kraisnikovic, Ceca; Bellec, Guillaume; Legenstein, Robert; Maass, Wolfgang (2021-07-26). O'Leary, Timothy; Behrens, Timothy E; Gutierrez, Gabrielle (eds.). "Spike frequency adaptation supports network computations on temporally dispersed information". eLife. 10: e65459. doi:10.7554/eLife.65459. ISSN 2050-084X. PMC 8313230. PMID 34310281.
  24. ^ Izhikevich, E.M. (2004). "Which model to use for cortical spiking neurons?". IEEE Transactions on Neural Networks. 15 (5): 1063–1070. doi:10.1109/tnn.2004.832719. PMID 15484883. S2CID 7354646. Retrieved 2024-02-14.
  25. ^ Adibi, M., McDonald, J. S., Clifford, C. W. & Arabzadeh, E. Adaptation improves neural coding efficiency despite increasing correlations in variability. J. Neurosci. 33, 2108–2120 (2013)
  26. ^ Laughlin, S. (1981). "A simple coding procedure enhances a neuron's information capacity". Zeitschrift für Naturforschung C. 36 (9–10): 910–912. ISSN 0341-0382. PMID 7303823.
  27. ^ Querlioz, Damien; Bichler, Olivier; Dollfus, Philippe; Gamrat, Christian (2013). "Immunity to Device Variations in a Spiking Neural Network With Memristive Nanodevices". IEEE Transactions on Nanotechnology. 12 (3): 288–295. Bibcode:2013ITNan..12..288Q. doi:10.1109/TNANO.2013.2250995. S2CID 14416573. Retrieved 2024-02-14.
  28. ^ Yamazaki, Kashu; Vo-Ho, Viet-Khoa; Bulsara, Darshan; Le, Ngan (July 2022). "Spiking Neural Networks and Their Applications: A Review". Brain Sciences. 12 (7): 863. doi:10.3390/brainsci12070863. ISSN 2076-3425. PMC 9313413. PMID 35884670.
  29. ^ Shaban, Ahmed; Bezugam, Sai Sukruth; Suri, Manan (2021-07-09). "An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation". Nature Communications. 12 (1): 4234. Bibcode:2021NatCo..12.4234S. doi:10.1038/s41467-021-24427-8. ISSN 2041-1723. PMC 8270926. PMID 34244491.
  30. ^ Bellec, Guillaume; Salaj, Darjan; Subramoney, Anand; Legenstein, Robert; Maass, Wolfgang (2018-12-25), Long short-term memory and learning-to-learn in networks of spiking neurons, arXiv:1803.09574
  31. ^ Alnajjar F, Murase K (2008). "A simple Aplysia-like spiking neural network to generate adaptive behavior in autonomous robots". Adaptive Behavior. 14 (5): 306–324. doi:10.1177/1059712308093869. S2CID 16577867.
  32. ^ Zhang X, Xu Z, Henriquez C, Ferrari S (Dec 2013). "Spike-based indirect training of a spiking neural network-controlled virtual insect". 52nd IEEE Conference on Decision and Control. pp. 6798–6805. CiteSeerX 10.1.1.671.6351. doi:10.1109/CDC.2013.6760966. ISBN 978-1-4673-5717-3. S2CID 13992150.
  33. ^ Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A (March 2019). "Deep learning in spiking neural networks". Neural Networks. 111: 47–63. arXiv:1804.08150. doi:10.1016/j.neunet.2018.12.002. PMID 30682710. S2CID 5039751.
  34. ^ Yamazaki K, Vo-Ho VK, Bulsara D, Le N (June 2022). "Spiking Neural Networks and Their Applications: A Review". Brain Sciences. 12 (7): 863. doi:10.3390/brainsci12070863. PMC 9313413. PMID 35884670.
  35. ^ Kim Y, Park H, Moitra A, Bhattacharjee A, Venkatesha Y, Panda P (2022-01-31). "Rate Coding or Direct Coding: Which One is Better for Accurate, Robust, and Energy-efficient Spiking Neural Networks?". arXiv:2202.03133 [cs.NE].
  36. ^ Ribeiro, Bernardete; Antunes, Francisco; Perdigão, Dylan; Silva, Catarina (2024-08-05). "Convolutional Spiking Neural Networks targeting learning and inference in highly imbalanced datasets". Pattern Recognition Letters. doi:10.1016/j.patrec.2024.08.002.
  37. ^ Abbott LF, Nelson SB (November 2000). "Synaptic plasticity: taming the beast". Nature Neuroscience. 3 (S11): 1178–1183. doi:10.1038/81453. PMID 11127835. S2CID 2048100.
  38. ^ Atiya AF, Parlos AG (May 2000). "New results on recurrent network training: unifying the algorithms and accelerating convergence". IEEE Transactions on Neural Networks. 11 (3): 697–709. doi:10.1109/72.846741. PMID 18249797.
  39. ^ Sanaullah S, Koravuna S, Rückert U, Jungeblut T (August 2023). "Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim". International Journal of Neural Systems. 33 (9): 2350044. doi:10.1142/S0129065723500442. PMID 37604777. S2CID 259445644.
  40. ^ Sutton RS, Barto AG (2002) Reinforcement Learning: An Introduction. Bradford Books, MIT Press, Cambridge, MA.
  41. ^ Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, et al. (April 2017). "Learning through ferroelectric domain dynamics in solid-state synapses". Nature Communications. 8: 14736. Bibcode:2017NatCo...814736B. doi:10.1038/ncomms14736. PMC 5382254. PMID 28368007.
  42. ^ Jin X, Furber SB, Woods JV (2008). "Efficient modelling of spiking neural networks on a scalable chip multiprocessor". 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). pp. 2812–2819. doi:10.1109/IJCNN.2008.4634194. ISBN 978-1-4244-1820-6. S2CID 2103654.
  43. ^ "Neuromorphic Computing". Human Brain Project.
  44. ^ "Hardware: Available Systems". Human Brain Project. Retrieved 2020-05-10.
  45. ^ Markoff J (8 August 2014). "A new chip functions like a brain, IBM says". The New York Times. p. B1.
  46. ^ Ponulak F, Kasiński A (February 2010). "Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting". Neural Computation. 22 (2): 467–510. doi:10.1162/neco.2009.11-08-901. PMID 19842989. S2CID 12572538.
  47. ^ Newman D, Hettich S, Blake C, Merz C (1998). "UCI repository of machine learning databases".
  48. ^ Bohte S, Kok JN, La Poutré H (2002). "Error-backpropagation in temporally encoded networks of spiking neurons". Neurocomputing. 48 (1–4): 17–37. doi:10.1016/S0925-2312(01)00658-0.
  49. ^ Pfister JP, Toyoizumi T, Barber D, Gerstner W (June 2006). "Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning". Neural Computation. 18 (6): 1318–1348. arXiv:q-bio/0502037. Bibcode:2005q.bio.....2037P. doi:10.1162/neco.2006.18.6.1318. PMID 16764506. S2CID 6379045.
  50. ^ Bohte SM, La Poutré H, Kok JN (March 2002). "Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks". IEEE Transactions on Neural Networks. 13 (2): 426–435. doi:10.1109/72.991428. PMID 18244443.

Read other articles:

J. L. Kapur Hakim Mahkamah Agung IndiaMasa jabatan14-01-1957–12-12-1962 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B J. L. Kapur adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 14-01-1957. Masa baktinya sebagai hakim berakhir pada 12-12-1962.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India ini adalah sebua...

 

 

Gambilangu adalah sebuah lokalisasi di Kota Semarang, Jawa Tengah. Terletak di dekat perbatasan Kota Semarang dengan Kabupaten Kendal, terletak di Kelurahan Mangkang Kulon. Pada awalnya tempat ini merupakan warung kecil remang remang semenjak tahun 1974, akan tetapi kasus prostusitusi sudah terjadi sejak tahun 1965. Saat kini Gambilangu merupakan sebuah tempat karaoke plus plus, yang mana para PSK tersebut berprofresi sebagai penyanyi karaoke. Para PSK berasal dari berbagai provinsi di Indone...

 

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

Artikel ini bukan mengenai Anne Avantie. Intan AvantieLahirEufrasya Citra Intan Avantie17 November 1984 (umur 39)Surakarta, Jawa Tengah, IndonesiaKebangsaanIndonesiaNama lainIntan AvantiePekerjaanPerancang busanaTahun aktif2004–sekarangSuami/istriChristinusAnak1 Eufrasya Citra Intan Avantie, yang lebih dikenal sebagai Intan Avantie (lahir 17 November 1984) adalah seorang perancang busana berkebangsaan Indonesia. Intan merupakan putri sulung dari perancang busana Anne Avantie....

 

 

County in Massachusetts, United States 42°08′N 72°38′W / 42.14°N 72.63°W / 42.14; -72.63 County in MassachusettsHampden CountyCountyHampden County Courthouse in Springfield SealLocation within the U.S. state of MassachusettsMassachusetts's location within the U.S.Coordinates: 42°07′39″N 72°34′17″W / 42.12756°N 72.571312°W / 42.12756; -72.571312Country United StatesState MassachusettsFoundedFebruary 1812Named forJohn...

 

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

Perang Koalisi 5Bagian dari Peperangan era NapoleonNapoleon di Wagram, lukisan karya Horace VernetTanggal10 April – 14 Oktober 1809LokasiEropa Tengah, Italia dan BelandaHasil Kemenangan Prancis, Traktat Schönbrunn Aliansi Prancis-Austria Napoléon menikahi Maria Louise dari Austria Perang Kemerdekaan Spanyol berlanjut Perang di Eropa kembali berlanjut pada tahun 1812 akibat invasi Prancis ke Rusia dan membesar pada tahun 1813 menjadi Perang Koalisi KeenamPerubahanwilayah Berbagai perubahan...

 

 

Struktur molekul Kitin Kitin adalah polisakarida struktural yang digunakan untuk menyusun eksoskleton dari artropoda (serangga, laba-laba, krustasea, dan hewan-hewan lain sejenis).[1] Kitin tergolong homopolisakarida linear yang tersusun atas residu N-asetilglukosamin pada rantai beta dan memiliki monomer berupa molekul glukosa dengan cabang yang mengandung nitrogen. [2] Kitin murni mirip dengan kulit, tetapi akan mengeras ketika dilapisi dengan garam kalsium karbonat.[1&#...

 

 

Dendrobranchiata Periode Famennia–Kini PreЄ Є O S D C P T J K Pg N ↓ Penaeus monodonTaksonomiKerajaanAnimaliaFilumArthropodaKelasMalacostracaOrdoDecapodaUpaordoDendrobranchiata Charles Spence Bate, 1888 Tata namaSinonim taksonPenaeidea Dana, 1852 [1]Superfamilies and familiesPenaeoidea Aciculopodidae † Aegeridae † Aristeidae Benthesicymidae Carpopenaeidae † Penaeidae Sicyoniidae Solenoceridae Sergestoidea Luciferidae Sergestidae lbs Dendrobranchiata adalah sebuah ...

Questa voce sull'argomento allenatori di pallacanestro britannici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Walter Meanwell Walter Meanwell nel 1912 Nazionalità  Regno Unito Pallacanestro Ruolo Allenatore Termine carriera 1934 Hall of fame Naismith Hall of Fame (1959) Carriera Carriera da allenatore 1911-1917 Wisconsin Badgers92-91917-1920 Missouri Tigers34-21930-1934 Wisconsin Badgers154-90 Il simbolo → indica un tra...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hong Kong Airport Services – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to...

 

 

Cet article est une ébauche concernant une chanson et le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. La mia città Emma Marrone au Concours Eurovision de la chanson 2014 Single de Emma Marrone Sortie 8 mars 2014 Durée 3:31 Langue Italien Genre Pop rock Format Téléchargement Compositeur Emma Marrone Singles représentant l'Italie au Concours Eurovision de la chanson...

Royal Air Force flying squadron No. 32 (The Royal) Squadron RAFXXXII Squadron RAF[1]squadron badgeActive12 January 1916 – 1 April 1918 (RFC)1 April 1918 – 29 December 1919 (RAF)1 April 1923 – presentCountry United KingdomAllegianceHM King Charles IIIBranch Royal Air ForceTypeflying squadronRoleCommand Support Air Transport[1]SizeThree aircraftPart ofNo. 2 GroupHome stationRAF Northolt[1]Motto(s)Adeste Comites (Latin for 'Rally round, comrades')[1...

 

 

Municipality in Chiapas, MexicoHuixtánMunicipalityMunicipality of Huixtán in ChiapasHuixtánLocation in MexicoCoordinates: 16°46′N 92°27′W / 16.767°N 92.450°W / 16.767; -92.450Country MexicoStateChiapasArea • Total70.0 sq mi (181.3 km2)Population (2010) • Total21,507Time zoneUTC-6 (CST) • Summer (DST)UTC-5 (CDT) Huixtán is a town and municipality in the Mexican state of Chiapas in southern Mexico. ...

 

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

LXXXIX campionati del mondo di ciclismo su strada 2016 Competizione Campionati del mondo di ciclismo su strada Sport Ciclismo su strada Edizione 89ª Organizzatore UCI Date 9 ottobre - 16 ottobre 2016 Luogo Doha Sito web www.dohacycling2016.com Cronologia della competizione 2015 2017 Manuale I Campionati del mondo di ciclismo su strada 2016 (en.: 2016 UCI Road World Championships) si svolsero dal 9 ottobre al 16 ottobre 2016 a Doha, in Qatar. Indice 1 Eventi 1.1 Cronosquadre 1.2 Cronometro i...

 

 

Badan Penelitian dan Pengembangandan Pendidikan dan Pelatihan Kementerian Agama Republik IndonesiaSusunan organisasiKepalaProf. Dr. Amien Suyitno, M.Ag.Situs webbalitbangdiklat.kemenag.go.id Badan Penelitian dan Pengembangan dan Pendidikan dan Pelatihan adalah salah satu unsur pendukung di Kementerian Agama Republik Indonesia yang berada di bawah dan bertanggung jawab kepada Menteri Agama. Badan Pengkajian dan Pengembangan Kebijakan dipimpin oleh Kepala Badan. Sejarah Secara historis, in...

 

 

Sudut kota Gorey. Untuk kota di Jersey, lihat Gorey, Jersey. Gorey (bahasa Irlandia: Guaire) ialah sebuah kota yang terletak sekitar 80 km di selatan Dublin, tepatnya di County Wexford. Karena tarif akomodasi kota ini terus naik, banyak pekerja yang memutuskan pindah ke luar kota; posisi Gorey di jalan N11 - yang terhubung langsung ke ibu kota - telah membuatnya menjadi pilihan menarik untuk komuter, banyak yang menghabiskan sedikit waktu bepergian untuk bekerja daripada yang tinggal di ...

Cet article est une ébauche concernant le chemin de fer et le Canada. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Thornton. Henry Worth Thornton Portrait en 1915. Données clés Naissance 6 novembre 1871 Logansport Décès 14 mars 1933 (à 61 ans) New York Profession Dirigeant d'entreprise Activité principale Chemin de fer modifier Henry Worth Thornton (1871-1933), es...

 

 

American college basketball season 2010–11 Arkansas–Little Rock Trojans men's basketballSun Belt tournament championsNCAA Tournament, First FourConferenceSun Belt ConferenceRecord19–17 (7–9 Sun Belt)Head coachSteve ShieldsAssistant coaches Joe Kleine Charles Cunningham Joe Golding Home arenaJack Stephens CenterSeasons← 2009–102011–12 → 2010–11 Sun Belt Conference men's basketball standings vte Conf Overall Team W   L   PCT W   L ...