Estimation theory

Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered:[1]

  • The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest
  • The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector.

Examples

For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it is desired to estimate the probability of a voter voting for a particular candidate, based on some demographic features, such as age.

Or, for example, in radar the aim is to find the range of objects (airplanes, boats, etc.) by analyzing the two-way transit timing of received echoes of transmitted pulses. Since the reflected pulses are unavoidably embedded in electrical noise, their measured values are randomly distributed, so that the transit time must be estimated.

As another example, in electrical communication theory, the measurements which contain information regarding the parameters of interest are often associated with a noisy signal.

Basics

For a given model, several statistical "ingredients" are needed so the estimator can be implemented. The first is a statistical sample – a set of data points taken from a random vector (RV) of size N. Put into a vector, Secondly, there are M parameters whose values are to be estimated. Third, the continuous probability density function (pdf) or its discrete counterpart, the probability mass function (pmf), of the underlying distribution that generated the data must be stated conditional on the values of the parameters: It is also possible for the parameters themselves to have a probability distribution (e.g., Bayesian statistics). It is then necessary to define the Bayesian probability After the model is formed, the goal is to estimate the parameters, with the estimates commonly denoted , where the "hat" indicates the estimate.

One common estimator is the minimum mean squared error (MMSE) estimator, which utilizes the error between the estimated parameters and the actual value of the parameters as the basis for optimality. This error term is then squared and the expected value of this squared value is minimized for the MMSE estimator.

Estimators

Commonly used estimators (estimation methods) and topics related to them include:

Examples

Unknown constant in additive white Gaussian noise

Consider a received discrete signal, , of independent samples that consists of an unknown constant with additive white Gaussian noise (AWGN) with zero mean and known variance (i.e., ). Since the variance is known then the only unknown parameter is .

The model for the signal is then

Two possible (of many) estimators for the parameter are:

  • which is the sample mean

Both of these estimators have a mean of , which can be shown through taking the expected value of each estimator and

At this point, these two estimators would appear to perform the same. However, the difference between them becomes apparent when comparing the variances. and

It would seem that the sample mean is a better estimator since its variance is lower for every N > 1.

Maximum likelihood

Continuing the example using the maximum likelihood estimator, the probability density function (pdf) of the noise for one sample is and the probability of becomes ( can be thought of a ) By independence, the probability of becomes Taking the natural logarithm of the pdf and the maximum likelihood estimator is

Taking the first derivative of the log-likelihood function and setting it to zero

This results in the maximum likelihood estimator which is simply the sample mean. From this example, it was found that the sample mean is the maximum likelihood estimator for samples of a fixed, unknown parameter corrupted by AWGN.

Cramér–Rao lower bound

To find the Cramér–Rao lower bound (CRLB) of the sample mean estimator, it is first necessary to find the Fisher information number and copying from above

Taking the second derivative and finding the negative expected value is trivial since it is now a deterministic constant

Finally, putting the Fisher information into results in

Comparing this to the variance of the sample mean (determined previously) shows that the sample mean is equal to the Cramér–Rao lower bound for all values of and . In other words, the sample mean is the (necessarily unique) efficient estimator, and thus also the minimum variance unbiased estimator (MVUE), in addition to being the maximum likelihood estimator.

Maximum of a uniform distribution

One of the simplest non-trivial examples of estimation is the estimation of the maximum of a uniform distribution. It is used as a hands-on classroom exercise and to illustrate basic principles of estimation theory. Further, in the case of estimation based on a single sample, it demonstrates philosophical issues and possible misunderstandings in the use of maximum likelihood estimators and likelihood functions.

Given a discrete uniform distribution with unknown maximum, the UMVU estimator for the maximum is given by where m is the sample maximum and k is the sample size, sampling without replacement.[2][3] This problem is commonly known as the German tank problem, due to application of maximum estimation to estimates of German tank production during World War II.

The formula may be understood intuitively as;

"The sample maximum plus the average gap between observations in the sample",

the gap being added to compensate for the negative bias of the sample maximum as an estimator for the population maximum.[note 1]

This has a variance of[2] so a standard deviation of approximately , the (population) average size of a gap between samples; compare above. This can be seen as a very simple case of maximum spacing estimation.

The sample maximum is the maximum likelihood estimator for the population maximum, but, as discussed above, it is biased.

Applications

Numerous fields require the use of estimation theory. Some of these fields include:

Measured data are likely to be subject to noise or uncertainty and it is through statistical probability that optimal solutions are sought to extract as much information from the data as possible.

See also

Notes

  1. ^ The sample maximum is never more than the population maximum, but can be less, hence it is a biased estimator: it will tend to underestimate the population maximum.

References

Citations

  1. ^ Walter, E.; Pronzato, L. (1997). Identification of Parametric Models from Experimental Data. London, England: Springer-Verlag.
  2. ^ a b Johnson, Roger (1994), "Estimating the Size of a Population", Teaching Statistics, 16 (2 (Summer)): 50–52, doi:10.1111/j.1467-9639.1994.tb00688.x
  3. ^ Johnson, Roger (2006), "Estimating the Size of a Population", Getting the Best from Teaching Statistics, archived from the original (PDF) on November 20, 2008

Sources

Read other articles:

Kelereng air warna warni Kelereng air atau gel kristal air atau manik-manik air atau gel manik-manik adalah gel yang dapat menyerap dan mengandung banyak air. Gel air biasanya dalam bentuk bulat dan terdiri dari polimer superserap penyerap air (SAP, juga dikenal sebagai bubuk lumpur dalam bentuk kering) seperti poliakrilamida (biasanya natrium poliakrilat). Kegunaan Kelereng air digunakan untuk Memasok air untuk hewan kecil sebagai alternatif untuk memasok air di piring. Beberapa hewan kecil ...

 

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) KBTTPK[[Berkas:|125px]] Tokoh penting Hardjosapoero(Bapa Panuntun Agung Sri Gutama)Soewartini Martodihardjo(Ibu Tuntunan Agung Sri Pawenang) Ajara...

 

 

sungai Hasbani Sungai Hasbani adalah sebuah sungai di Lebanon yang tergabung dengan Sungai Banias yang membuat Sungai Yordan. Sungai ini mengalir dari sumber air Wazzani di kaki Gunung Hermon. Terdapat bagian kecil sungai ini di bagian utara Israel. Artikel bertopik geografi atau tempat Lebanon ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

فورهيسفيل   الإحداثيات 42°38′59″N 73°55′45″W / 42.649722222222°N 73.929166666667°W / 42.649722222222; -73.929166666667  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ألباني  خصائص جغرافية  المساحة 5.551827 كيلومتر مربع5.551723 كيلومتر مربع (1 أبريل 2010)  ارتفاع ...

 

 

K-On!Sampul manga K-On! volume pertama menampilkan Yui Hirasawa.けいおん!(Keion!)GenreKomedi, Slice of life MangaPengarangKakiflyPenerbitHoubunshaPenerbit bahasa InggrisNA Yen PressMajalahManga Time KiraraManga Time Kirara CaratMajalah bahasa InggrisUS Yen PlusDemografiSeinenTerbitMei 2007 – Agustus 2012Volume6 Seri animeSutradaraNaoko YamadaSkenarioReiko YoshidaMusikHajime HyakkokuStudioKyoto AnimationPelisensiAUS Madman EntertainmentNA Sentai FilmworksUK Manga EntertainmentSaluranasli...

 

 

Planaria Dugesia subtentaculata, seekor dugesiidae. Klasifikasi ilmiah Kerajaan: Animalia Filum: Platyhelminthes Kelas: Rhabditophora Ordo: TricladidaLang, 1884 Subordo Maricola Cavernicola Continenticola Planaria termasuk dalam Filum Platyhelminthes yang memiliki bentuk tubuh pipih dan simetri bilateral. Planaria berhabitat di daerah bertemperatur 18–24 °C dengan ketinggian antara 500–1500 m dpl. Tubuh planaria tersusun dari bagian cranial, trunchus dan caudal. Bagian cranial terd...

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

 

Pour l'opération militaire de l'OTAN, voir Opération Ocean Shield. Pour un article plus général, voir Piraterie moderne. Pirates à bord du navire de pêche chinois Tianyu no 8 le 17 novembre 2008, l'équipage étant gardé en otage à l'avant du bateau. La piraterie autour de la Corne de l'Afrique, essentiellement composée de pirates somaliens, a pris la forme d'attaques de navires, de pillages et d'enlèvements en mer à partir de 2005 . Elle est devenue une menace pour le transp...

 

 

1999 Hong Kong action romantic comedy film directed by Vincent Kok GorgeousDirected byVincent KokWritten by Jackie Chan Vincent Kok Yiu Fai Lo Produced byJackie ChanStarring Jackie Chan Shu Qi Tony Leung Chiu-wai Wakin Chau CinematographyCheung Man-poEdited by Cheung Ka-Fai Kwong Chi-leung Music byWong Dang-yiProductioncompanyGolden HarvestDistributed byGolden HarvestRelease date 12 February 1999 (1999-02-12) Running time120 minutesCountryHong KongLanguagesCantoneseMandarinHokk...

Traditional Lao condiment made from pickled or fermented fish that has been cured PadaekBottles of padaek at a convenience store in Vientiane, LaosAlternative namespadekPlace of originLaosRegion or stateSoutheast AsiaAssociated cuisineLaoMain ingredientsfermented fishSimilar dishesprahok, pla ra, ngapi, bagoong Padaek or padek (Lao: ປາແດກ) is a traditional Lao condiment made from pickled or fermented fish that has been cured. It often contains chunks of fish and is thicker, as well ...

 

 

Piala Liga Inggris 2006–20072006–07 Football League CupNegara Inggris WalesTanggal penyelenggaraan21 Agustus 2006 s.d. 25 Februari 2007Jumlah peserta92Juara bertahanManchester UnitedJuaraChelsea(gelar ke-4)Tempat keduaArsenalPencetak gol terbanyakJermaine EasterJúlio Baptista(6 gol)← 2005–2006 2007–2008 → Piala Liga Inggris 2006–2007 adalah edisi ke-47 penyelenggaraan Piala Liga Inggris, sebuah kompetisi dengan sistem gugur untuk 92 tim terbaik di Inggris. Edisi ini d...

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Pour les articles homonymes, voir Saint-Cyr. Saint-Cyr-la-Rivière L’hôtel de ville. Blason Administration Pays France Région Île-de-France Département Essonne Arrondissement Étampes Intercommunalité Communauté de communes de l'Étampois Sud-Essonne Maire Mandat Christèle Deloison 2020-2026 Code postal 91690 Code commune 91544 Démographie Gentilé Saint-Cyriens Populationmunicipale 489 hab. (2021 ) Densité 56 hab./km2 Géographie Coordonnées 48° 21′ 17″&...

 

 

Municipality in Dobrich, BulgariaShabla Municipality Община ШаблаMunicipalityShabla Municipality within Bulgaria and Dobrich Province.Coordinates: 43°36′N 28°31′E / 43.600°N 28.517°E / 43.600; 28.517Country BulgariaProvince (Oblast)DobrichAdmin. centre (Obshtinski tsentar)ShablaArea • Total329.64 km2 (127.27 sq mi)Population (December 2009)[1] • Total5,580 • Density17/km2 (44/sq...

 

 

المركبات الأليفاتية في علم الكيمياء هي المركبات العضوية غير الأروماتية.ويمكن ببساطة وصف المركبات الأليفاتية بأنها مركبات خطية مسلسلة، وعنصرها الأساسي الكربون.[1][2][3] وهي تحتوي على الأحماض الدهنية والمشتقات البرافينية الأخرى، والمركبات غير المشبعة، مثل الإث�...

Kaili beralih ke halaman ini. Untuk bahasa yang digunakan suku ini, lihat Bahasa Kaili. Untuk pemain sepak bola Jepang, lihat Kaili Shimbo. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Suku Kaili – berita · surat kabar · buku · cendekiawan · JSTOR ...

 

 

U.S. Space Force unit 65th Cyberspace Squadron65 CYS emblemActive14 April 1942–12 January 194323 January 2004–presentCountry United StatesBranch United States Space ForceTypeSquadronRoleCyber operationsPart ofSpace Delta 6HeadquartersVandenberg Space Force Base, California, U.S.CommandersCommanderLt Col Jacob MajewskiInsignia614th Air and Space Communications Squadron emblemMilitary unit The 65th Cyberspace Squadron (65 CYS) is a United States Space Force unit responsible f...

 

 

جزء من سلسلة مقالات حولالتسويق أسس التسويق المنتج السعر الترويج التوزيع مفاهيم رئيسة بحث السوق خطة التسويق إدارة التسويق إنفاق تسويقي بنية تسويقية نظام المعلومات التسويقية استخبارات تسويقية تسويق المنتج ما بعد التسويق إتصالات التسويق وسائل التسويق الطباعة الراديو التل...

Henri van Cuykvescovo della Chiesa cattolica Da gloriam Deo  Incarichi ricopertiVescovo di Roermond (1595-1609)  Nato1546 ad Culemborg Consacrato vescovo8 luglio 1596 dall'arcivescovo Mathias Hovius Deceduto9 ottobre 1609 a Roermond   Manuale Henri van Cuyk conosciuto anche come Hendrik van Cuyk o con il nome latinizzato Henricus Cuyckius (Culemborg, 1546 – Roermond, 9 ottobre 1609) è stato un vescovo cattolico e umanista olandese. Indice 1 Biografia 2 Opere 3 Opere (selezio...

 

 

1968 single by Linda Lyndell Whatta Man redirects here. For the South Korean song, see Whatta Man (I.O.I song). What a Man2002 UK vinyl re-releaseSingle by Linda LyndellB-sideI Don't KnowReleasedJuly 1968 (US)GenreSoulLabelVolt (VOA-4001)Songwriter(s)Dave CrawfordProducer(s)Dave CrawfordLinda Lyndell singles chronology Bring Your Love Back to Me (1976) What a Man (1968) What a Man is a song written by Dave Crawford, and originally recorded for Stax Records' Volt imprint by Linda Lyndell, whos...