To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.
The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.
Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).
Domains
DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.
Time and space domains
Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.
The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.
Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.
The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.
Filtering, particularly in non-realtime work can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response including excellent approximations to brickwall filters.
There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.
Z-plane analysis
Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.
Autoregression analysis
A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9]Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]
Time-frequency analysis
A time-frequency representation of signal can capture both temporal evolution and frequency structure of analyzed signal. Temporal and frequency resolution are limited by the principle of uncertainty and the tradeoff is adjusted by the width of analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.
Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]
For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.
When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.
Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]
Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.
Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN1-898563-48-9
James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN1-878707-16-7
Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN0-333-96356-3
Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN0-471-14961-6
John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN978-0131873742
John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN0-13-143239-7
Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN0-07-829744-3
Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN0-87259-819-5
Stein, Jonathan Yaakov (2000-10-09). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN0-471-29546-9.
Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN0-8493-3691-0.
Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN0-13-016077-6.
Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN1-292-02572-7.
Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)
References
^B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
^Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN978-1-119-94359-4.
^Broesch, James D.; Stranneby, Dag; Walker, William (2008-10-20). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN9780750689762.
^Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
^So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
Ḥasidei ummot ha'olam (חסידי אומות העולם, orang-orang yang bertindak benar dari bangsa-bangsa dunia) gelar kehormatan yang diberikan oleh Negara Israel kepada orang non-Yahudi yang merelakan hidup mereka saat Holocaust untuk menyelamatkan orang Yahudi dari penangkapan tentara Nazi. Seorang ḥasidei menghadiri acara di Senat Polandia (2012) Medali milik Marta Bocheńska Sertifikat ḥasidei ummot ha'olam milik Maria Kotarba Perayaan Ḥasidei dihormati dengan sebuah hari per...
Voce principale: Unione Sportiva Internazionale Napoli. Unione Sportiva Internazionale NapoliStagione 1919-1920Sport calcio Squadra Internazionale Napoli Allenatore? Presidente Emilio Reale Prima Categoria3º nel girone B di Lega Sud1º nel Girone Campano Maggiori presenzeCampionato: Santini, Serracapriola, Steiger (11)Totale: Santini, Serracapriola, Steiger (11) Miglior marcatoreCampionato: Sacchi (6)Totale: Sacchi (6) 1919 1920-1921 Si invita a seguire il modello di voce Questa voce r...
Al-Bîrûnî Portrait imaginaire d'Al-Bîrûnî Données clés Nom de naissance Afzal Muhammad ibn Ahmad Abū al-Rehān Naissance septembre 973 Faubourg de Kath, Khwarezm, Grand Iran, (actuel Ouzbékistan) Décès circa 1050 Ghazni, Grand Iran, Empire ghaznévide (actuel Afghanistan) Profession Scientifique, érudit Activité principale mathématiques Autres activités astronomie, physique, encyclopédiste, astrologie, histoire, pharmacologie, philosophie modifier Al-Biruni statue à Vienne,...
Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) The following list includes all of the Canadian Register of Historic Places listings in Nanaimo Regional District, British Columbia. Name Address Coordinates Government recognition (CRHP №) Image A.R. Johnston Block 174 Commercial StreetNanaimo BC 49°10′01″N 123°56′13″W / 49.167°N 123.937°W / 49.167; -123.937...
أشخاص من خلفيات ثقافية مختلفة. التنوع الثقافي [1] (بالإنجليزية: Cultural diversity) هو عِبارة عن تنوعِ الثقافاتِ المختلفة، وهي تختلف عن الثقافات ذات الجنس الواحد، أو الثقافة العالمية ذات جنسها، أو تجانس الثقافات.[2][3] ويمكن أن تشير عبارة «التنوع الثقافي» أيضًا إلى وجود ...
Artikel ini bukan mengenai Serbuk pisang. Pisang mentah, bahan baku untuk membuat tepung pisang Tepung pisang adalah bubuk yang secara tradisional dibuat dari pisang mentah. Dahulunya, tepung pisang digunakan di Afrika dan Jamaika sebagai alternatif tepung terigu yang lebih murah.[1] Kini tepung pisang sering digunakan sebagai pengganti tepung terigu yang bebas gluten[2] atau sebagai sumber pati resistan, yang dipromosikan dalam tren diet tertentu seperti diet paleo dan primal...
هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...
American politician Theodore SpeliotisTheodore C. SpeliotisMember of the Massachusetts House of Representativesfrom the 13th Essex districtIn office1997–2021Preceded bySally KeransSucceeded bySally KeransMember of the Massachusetts House of Representativesfrom the 12th Essex districtIn office1979–1987Preceded byRobert C. BuellSucceeded byThomas Walsh Personal detailsBorn (1953-08-20) August 20, 1953 (age 70)Salem, Massachusetts, U.S.Political partyDemocraticSp...
Fabio Pecchia Pecchia al Napoli nel 1996 Nazionalità Italia Altezza 172 cm Peso 70 kg Calcio Ruolo Allenatore (ex centrocampista) Squadra Parma Termine carriera 1º luglio 2009 - giocatore CarrieraGiovanili 1985-1992 AvellinoSquadre di club1 1991-1993 Avellino33 (1)1993-1997 Napoli125 (15)1997-1998 Juventus21 (1)1998-1999 Sampdoria26 (1)1999-2000 Torino22 (1)2000-2001 Napoli27 (6)2001-2002 Bologna33 (5)2002-2003→ Como27 (6)2003-200...
Kementerian Tenaga Kerja dan Buruh Republik Korea고용노동부雇傭勞動部Goyong nodong-buInformasi lembagaDibentuk11 November 1948Nomenklatur sebelumnyaDivisi Perburuhan, Kementerian SosialKementerian BuruhWilayah hukumPemerintah Korea SelatanKantor pusatKementerian Tenaga Kerja dan Buruh, Gedung 11, Kompleks Pemerintah Sejong, 422, Hanuridae-ro, Kota Sejong, Korea Selatan (339-012)MenteriKim Young-ju, Menteri Tenaga Kerja dan BuruhLee Sung-ki, Wakil MenteriSitus webOfficial Ministry of...
Black Panther: Wakanda ForeverPoster rilis bioskopSutradaraRyan CooglerProduser Kevin Feige Nate Moore Skenario Ryan Coogler Joe Robert Cole CeritaRyan CooglerBerdasarkanMarvel ComicsPemeran Letitia Wright Lupita Nyong'o Danai Gurira Winston Duke Florence Kasumba Dominique Thorne Michaela Coel Tenoch Huerta Martin Freeman Julia Louis-Dreyfus Angela Bassett Penata musikLudwig GöranssonSinematograferAutumn Durald ArkapawPenyunting Michael P. Shawver Kelley Dixon Jennifer Lame Perusahaanp...
Electrical component for processing data This article is about the computer hardware. For software and systems uses, see Processor § Computing. In computing and computer science, a processor or processing unit is an electrical component (digital circuit) that performs operations on an external data source, usually memory or some other data stream.[1] It typically takes the form of a microprocessor, which can be implemented on a single or a few tightly integrated metal–oxide–semic...
Down in the AlleyLagu oleh The Cloversdari album Dance PartySisi-ADown in the AlleyThere's No TomorrowDirilis1957FormatSingel 7Durasi2:18PenciptaJesse Stone Down in the AlleyLagu oleh Elvis Presleydari album SpinoutDirilis1966Direkam26 Mei 1966Durasi2:48PenciptaJesse Stone dan The Clovers Down in the Alley adalah sebuah lagu yang dirilis sebagai sebuah singel oleh The Clovers pada 1957. Elvis Presley merekamnya pada 1966. Versinya meliputi sebuah lagu tambahan pada album soundtrack tahun 1966...
Indian Marathi-language film industry Marathi CinemaNo. of screensApprox 610 in Maharashtra state of India.[1]Main distributorsAatpat ProductionRasika ProductionsDreaming 24/7 ProductionsAlmonds CreationsEverest EntertainmentPickle Entertainment and MediaAP CommunicationsSwarali Films CreationSix Sense Film ProductionMulakshar ProductionsProduced feature films (2022)[2]Total120 (Theatrical)Gross box office (2023)[3]National filmsIndia: ₹201 crore (US$24...
Ciipher싸이퍼Ciipher di tahun 2021Informasi latar belakangAsalKorea SelatanGenreK-popEDMR&BTahun aktif2021–sekarang (2021–sekarang)LabelR.A.I.N. CompanyArtis terkaitRainAnggota Tan Hwi Hyunbin Keita Tag Dohwan Won Ciipher (bahasa Korea: 싸이퍼) adalah sebuah grup vokal pria asal Korea Selatan yang dibentuk oleh Rain di bawah naungan R.A.I.N. Company. Grup ini terdiri dari Tan, Hwi, Hyunbin, Keita, Tag, Dohwan dan Won. Grup ini debut pada 15 Maret 2021 dengan album mini ...
Pour les articles homonymes, voir Gil González, González et Dávila. Ne doit pas être confondu avec Gil González de Ávila. Gil González DávilaBiographieNaissance 1480ÁvilaDécès 1526ÁvilaNom dans la langue maternelle Gil DávilaActivités Explorateur, gouverneurmodifier - modifier le code - modifier Wikidata Gil González Dávila Gil González Dávila[1], né en 1480 à Ávila (royaume de Castille) où il meurt le 21 avril 1526, est un conquistador espagnol, le premier Européen à...