Digital signal processing

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train,[1][2] which is typically generated by the switching of a transistor.[3]

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to nonlinear system identification[4] and can be implemented in the time, frequency, and spatio-temporal domains.

The application of digital computation to signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[5] Digital signal processing is also fundamental to digital technology, such as digital telecommunication and wireless communications.[6] DSP is applicable to both streaming data and static (stored) data.

Signal sampling

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.

Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).

Domains

DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.

Time and space domains

Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.

Frequency domain

Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.

Filtering, particularly in non-realtime work can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.

Z-plane analysis

Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.

Autoregression analysis

A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9] Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]

Time-frequency analysis

A time-frequency representation of signal can capture both temporal evolution and frequency structure of analyzed signal. Temporal and frequency resolution are limited by the principle of uncertainty and the tradeoff is adjusted by the width of analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.

Wavelet

An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. The accuracy of the joint time-frequency resolution is limited by the uncertainty principle of time-frequency.

Empirical mode decomposition

Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]

Implementation

DSP algorithms may be run on general-purpose computers[16] and digital signal processors.[17] DSP algorithms are also implemented on purpose-built hardware such as application-specific integrated circuit (ASICs).[18] Additional technologies for digital signal processing include more powerful general-purpose microprocessors, graphics processing units, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors.[19]

For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.

When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.

Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]

Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.

Applications

General application areas for DSP include

Specific examples include speech coding and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, audio crossovers and equalization, digital synthesizers, and audio effects units.[22] DSP has been used in hearing aid technology since 1996, which allows for automatic directional microphones, complex digital noise reduction, and improved adjustment of the frequency response.[23]

Techniques

Further reading

  • Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). "Orthogonal transforms for digital signal processing". ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 1. New York: Springer-Verlag. pp. 136–140. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
  • Stein, Jonathan Yaakov (2000-10-09). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
  • Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
  • Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
  • Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
  • Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)

References

  1. ^ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
  2. ^ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
  3. ^ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
  4. ^ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
  5. ^ Broesch, James D.; Stranneby, Dag; Walker, William (2008-10-20). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
  6. ^ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
  7. ^ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
  8. ^ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
  9. ^ a b c Marple, S. Lawrence (1987-01-01). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
  10. ^ a b c d Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2003-05-01). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2019-02-17.
  11. ^ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
  12. ^ Mitrofanov, Georgy; Priimenko, Viatcheslav (2015-06-01). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
  13. ^ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2020-09-08.
  14. ^ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2017-12-03.
  15. ^ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (1998-03-08). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2018-06-05.
  16. ^ Weipeng, Jiang; Zhiqiang, He; Ran, Duan; Xinglin, Wang (August 2012). "Major optimization methods for TD-LTE signal processing based on general purpose processor". 7th International Conference on Communications and Networking in China. pp. 797–801. doi:10.1109/ChinaCom.2012.6417593. ISBN 978-1-4673-2699-5. S2CID 17594911.
  17. ^ Zaynidinov, Hakimjon; Ibragimov, Sanjarbek; Tojiboyev, Gayrat; Nurmurodov, Javohir (2021-06-22). "Efficiency of Parallelization of Haar Fast Transform Algorithm in Dual-Core Digital Signal Processors". 2021 8th International Conference on Computer and Communication Engineering (ICCCE). IEEE. pp. 7–12. doi:10.1109/ICCCE50029.2021.9467190. ISBN 978-1-7281-1065-3. S2CID 236187914.
  18. ^ Lyakhov, P.A. (June 2023). "Area-Efficient digital filtering based on truncated multiply-accumulate units in residue number system 2 n - 1 , 2 n , 2 n + 1". Journal of King Saud University - Computer and Information Sciences. 35 (6): 101574. doi:10.1016/j.jksuci.2023.101574.
  19. ^ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
  20. ^ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2008-05-10.
  21. ^ Kapinchev, Konstantin; Bradu, Adrian; Podoleanu, Adrian (December 2019). "Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging". 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (PDF). pp. 1–7. doi:10.1109/ICSPCS47537.2019.9008720. ISBN 978-1-7281-2194-9. S2CID 211686462.
  22. ^ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
  23. ^ Kerckhoff, Jessica; Listenberger, Jennifer; Valente, Michael (October 1, 2008). "Advances in hearing aid technology". Contemporary Issues in Communication Science and Disorders. 35: 102–112. doi:10.1044/cicsd_35_F_102.

Read other articles:

Ḥasidei ummot ha'olam (חסידי אומות העולם, orang-orang yang bertindak benar dari bangsa-bangsa dunia) gelar kehormatan yang diberikan oleh Negara Israel kepada orang non-Yahudi yang merelakan hidup mereka saat Holocaust untuk menyelamatkan orang Yahudi dari penangkapan tentara Nazi. Seorang ḥasidei menghadiri acara di Senat Polandia (2012) Medali milik Marta Bocheńska Sertifikat ḥasidei ummot ha'olam milik Maria Kotarba Perayaan Ḥasidei dihormati dengan sebuah hari per...

 

Traianos Dellas Dellas berseragam Yunani.Informasi pribadiNama lengkap Traianos DellasTanggal lahir 31 Januari 1976 (umur 48)Tempat lahir Thessaloniki, YunaniTinggi 1,96 m (6 ft 5 in)Posisi bermain BekInformasi klubKlub saat ini AEK AthensNomor 5Karier junior1987–1993 ArisKarier senior*Tahun Tim Tampil (Gol)1993–1997 Aris 022 (4)1995–1996 → Panserraikos (pinjaman) 039 (5)1997–1999 Sheffield United 26 (3)1999–2001 AEK Athens 42 (4)2001–2002 Perugia 8 (0)2002�...

 

Voce principale: Unione Sportiva Internazionale Napoli. Unione Sportiva Internazionale NapoliStagione 1919-1920Sport calcio Squadra Internazionale Napoli Allenatore? Presidente Emilio Reale Prima Categoria3º nel girone B di Lega Sud1º nel Girone Campano Maggiori presenzeCampionato: Santini, Serracapriola, Steiger (11)Totale: Santini, Serracapriola, Steiger (11) Miglior marcatoreCampionato: Sacchi (6)Totale: Sacchi (6) 1919 1920-1921 Si invita a seguire il modello di voce Questa voce r...

Al-Bîrûnî Portrait imaginaire d'Al-Bîrûnî Données clés Nom de naissance Afzal Muhammad ibn Ahmad Abū al-Rehān Naissance septembre 973 Faubourg de Kath, Khwarezm, Grand Iran, (actuel Ouzbékistan) Décès circa 1050 Ghazni, Grand Iran, Empire ghaznévide (actuel Afghanistan) Profession Scientifique, érudit Activité principale mathématiques Autres activités astronomie, physique, encyclopédiste, astrologie, histoire, pharmacologie, philosophie modifier Al-Biruni statue à Vienne,...

 

Map all coordinates using OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) The following list includes all of the Canadian Register of Historic Places listings in Nanaimo Regional District, British Columbia. Name Address Coordinates Government recognition (CRHP №) Image A.R. Johnston Block 174 Commercial StreetNanaimo BC 49°10′01″N 123°56′13″W / 49.167°N 123.937°W / 49.167; -123.937&#x...

 

أشخاص من خلفيات ثقافية مختلفة. التنوع الثقافي [1] (بالإنجليزية: Cultural diversity)‏ هو عِبارة عن تنوعِ الثقافاتِ المختلفة، وهي تختلف عن الثقافات ذات الجنس الواحد، أو الثقافة العالمية ذات جنسها، أو تجانس الثقافات.[2][3] ويمكن أن تشير عبارة «التنوع الثقافي» أيضًا إلى وجود ...

Artikel ini bukan mengenai Serbuk pisang. Pisang mentah, bahan baku untuk membuat tepung pisang Tepung pisang adalah bubuk yang secara tradisional dibuat dari pisang mentah. Dahulunya, tepung pisang digunakan di Afrika dan Jamaika sebagai alternatif tepung terigu yang lebih murah.[1] Kini tepung pisang sering digunakan sebagai pengganti tepung terigu yang bebas gluten[2] atau sebagai sumber pati resistan, yang dipromosikan dalam tren diet tertentu seperti diet paleo dan primal...

 

هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد  القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...

 

American politician Theodore SpeliotisTheodore C. SpeliotisMember of the Massachusetts House of Representativesfrom the 13th Essex districtIn office1997–2021Preceded bySally KeransSucceeded bySally KeransMember of the Massachusetts House of Representativesfrom the 12th Essex districtIn office1979–1987Preceded byRobert C. BuellSucceeded byThomas Walsh Personal detailsBorn (1953-08-20) August 20, 1953 (age 70)Salem, Massachusetts, U.S.Political partyDemocraticSp...

Fabio Pecchia Pecchia al Napoli nel 1996 Nazionalità  Italia Altezza 172 cm Peso 70 kg Calcio Ruolo Allenatore (ex centrocampista) Squadra  Parma Termine carriera 1º luglio 2009 - giocatore CarrieraGiovanili 1985-1992 AvellinoSquadre di club1 1991-1993 Avellino33 (1)1993-1997 Napoli125 (15)1997-1998 Juventus21 (1)1998-1999 Sampdoria26 (1)1999-2000 Torino22 (1)2000-2001 Napoli27 (6)2001-2002 Bologna33 (5)2002-2003→  Como27 (6)2003-200...

 

Kementerian Tenaga Kerja dan Buruh Republik Korea고용노동부雇傭勞動部Goyong nodong-buInformasi lembagaDibentuk11 November 1948Nomenklatur sebelumnyaDivisi Perburuhan, Kementerian SosialKementerian BuruhWilayah hukumPemerintah Korea SelatanKantor pusatKementerian Tenaga Kerja dan Buruh, Gedung 11, Kompleks Pemerintah Sejong, 422, Hanuridae-ro, Kota Sejong, Korea Selatan (339-012)MenteriKim Young-ju, Menteri Tenaga Kerja dan BuruhLee Sung-ki, Wakil MenteriSitus webOfficial Ministry of...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

Black Panther: Wakanda ForeverPoster rilis bioskopSutradaraRyan CooglerProduser Kevin Feige Nate Moore Skenario Ryan Coogler Joe Robert Cole CeritaRyan CooglerBerdasarkanMarvel ComicsPemeran Letitia Wright Lupita Nyong'o Danai Gurira Winston Duke Florence Kasumba Dominique Thorne Michaela Coel Tenoch Huerta Martin Freeman Julia Louis-Dreyfus Angela Bassett Penata musikLudwig GöranssonSinematograferAutumn Durald ArkapawPenyunting Michael P. Shawver Kelley Dixon Jennifer Lame Perusahaanp...

 

Electrical component for processing data This article is about the computer hardware. For software and systems uses, see Processor § Computing. In computing and computer science, a processor or processing unit is an electrical component (digital circuit) that performs operations on an external data source, usually memory or some other data stream.[1] It typically takes the form of a microprocessor, which can be implemented on a single or a few tightly integrated metal–oxide–semic...

2024年夏季奥林匹克运动会瑞典代表團瑞典国旗IOC編碼SWENOC瑞典奧林匹克委員會網站sok.se(英文)(瑞典文)2024年夏季奥林匹克运动会(巴黎)2024年7月26日至8月11日運動員37參賽項目8个大项历届奥林匹克运动会参赛记录(总结)夏季奥林匹克运动会189619001904190819121920192419281932193619481952195619601964196819721976198019841988199219962000200420082012201620202024冬季奥林匹克运动会1924192819321936194819...

 

Down in the AlleyLagu oleh The Cloversdari album Dance PartySisi-ADown in the AlleyThere's No TomorrowDirilis1957FormatSingel 7Durasi2:18PenciptaJesse Stone Down in the AlleyLagu oleh Elvis Presleydari album SpinoutDirilis1966Direkam26 Mei 1966Durasi2:48PenciptaJesse Stone dan The Clovers Down in the Alley adalah sebuah lagu yang dirilis sebagai sebuah singel oleh The Clovers pada 1957. Elvis Presley merekamnya pada 1966. Versinya meliputi sebuah lagu tambahan pada album soundtrack tahun 1966...

 

Indian Marathi-language film industry Marathi CinemaNo. of screensApprox 610 in Maharashtra state of India.[1]Main distributorsAatpat ProductionRasika ProductionsDreaming 24/7 ProductionsAlmonds CreationsEverest EntertainmentPickle Entertainment and MediaAP CommunicationsSwarali Films CreationSix Sense Film ProductionMulakshar ProductionsProduced feature films (2022)[2]Total120 (Theatrical)Gross box office (2023)[3]National filmsIndia: ₹201 crore (US$24...

Ciipher싸이퍼Ciipher di tahun 2021Informasi latar belakangAsalKorea SelatanGenreK-popEDMR&BTahun aktif2021–sekarang (2021–sekarang)LabelR.A.I.N. CompanyArtis terkaitRainAnggota Tan Hwi Hyunbin Keita Tag Dohwan Won Ciipher (bahasa Korea: 싸이퍼) adalah sebuah grup vokal pria asal Korea Selatan yang dibentuk oleh Rain di bawah naungan R.A.I.N. Company. Grup ini terdiri dari Tan, Hwi, Hyunbin, Keita, Tag, Dohwan dan Won. Grup ini debut pada 15 Maret 2021 dengan album mini ...

 

Pour les articles homonymes, voir Gil González, González et Dávila. Ne doit pas être confondu avec Gil González de Ávila. Gil González DávilaBiographieNaissance 1480ÁvilaDécès 1526ÁvilaNom dans la langue maternelle Gil DávilaActivités Explorateur, gouverneurmodifier - modifier le code - modifier Wikidata Gil González Dávila Gil González Dávila[1], né en 1480 à Ávila (royaume de Castille) où il meurt le 21 avril 1526, est un conquistador espagnol, le premier Européen à...