Image compression

Image compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data.[1]

Comparison of JPEG images saved by Adobe Photoshop at different quality levels and with or without "save for web"

Lossy and lossless image compression

Image compression may be lossy or lossless. Lossless compression is preferred for archival purposes and often for medical imaging, technical drawings, clip art, or comics. Lossy compression methods, especially when used at low bit rates, introduce compression artifacts. Lossy methods are especially suitable for natural images such as photographs in applications where minor (sometimes imperceptible) loss of fidelity is acceptable to achieve a substantial reduction in bit rate. Lossy compression that produces negligible differences may be called visually lossless.

Methods for lossy compression:

Methods for lossless compression:

Other properties

The best image quality at a given compression rate (or bit rate) is the main goal of image compression, however, there are other important properties of image compression schemes:

Scalability generally refers to a quality reduction achieved by manipulation of the bitstream or file (without decompression and re-compression). Other names for scalability are progressive coding or embedded bitstreams. Despite its contrary nature, scalability also may be found in lossless codecs, usually in form of coarse-to-fine pixel scans. Scalability is especially useful for previewing images while downloading them (e.g., in a web browser) or for providing variable quality access to e.g., databases. There are several types of scalability:

  • Quality progressive or layer progressive: The bitstream successively refines the reconstructed image.
  • Resolution progressive: First encode a lower image resolution; then encode the difference to higher resolutions.[6][7]
  • Component progressive: First encode grey-scale version; then adding full color.

Region of interest coding. Certain parts of the image are encoded with higher quality than others. This may be combined with scalability (encode these parts first, others later).

Meta information. Compressed data may contain information about the image which may be used to categorize, search, or browse images. Such information may include color and texture statistics, small preview images, and author or copyright information.

Processing power. Compression algorithms require different amounts of processing power to encode and decode. Some high compression algorithms require high processing power.

The quality of a compression method often is measured by the peak signal-to-noise ratio. It measures the amount of noise introduced through a lossy compression of the image, however, the subjective judgment of the viewer also is regarded as an important measure, perhaps, being the most important measure.

History

Entropy coding started in the late 1940s with the introduction of Shannon–Fano coding,[8] the basis for Huffman coding which was published in 1952.[9] Transform coding dates back to the late 1960s, with the introduction of fast Fourier transform (FFT) coding in 1968 and the Hadamard transform in 1969.[10]

An important development in image data compression was the discrete cosine transform (DCT), a lossy compression technique first proposed by Nasir Ahmed, T. Natarajan and K. R. Rao in 1973.[11] JPEG was introduced by the Joint Photographic Experts Group (JPEG) in 1992.[12] JPEG compresses images down to much smaller file sizes, and has become the most widely used image file format.[13] JPEG was largely responsible for the wide proliferation of digital images and digital photos,[14] with several billion JPEG images produced every day as of 2015.[15]

Lempel–Ziv–Welch (LZW) is a lossless compression algorithm developed by Abraham Lempel, Jacob Ziv and Terry Welch in 1984. It is used in the GIF format, introduced in 1987.[16] DEFLATE, a lossless compression algorithm developed by Phil Katz and specified in 1996, is used in the Portable Network Graphics (PNG) format.[17]

The JPEG 2000 standard was developed from 1997 to 2000 by a JPEG committee chaired by Touradj Ebrahimi (later the JPEG president).[18] In contrast to the DCT algorithm used by the original JPEG format, JPEG 2000 instead uses discrete wavelet transform (DWT) algorithms. It uses the CDF 9/7 wavelet transform (developed by Ingrid Daubechies in 1992) for its lossy compression algorithm,[19] and the Le Gall–Tabatabai (LGT) 5/3 wavelet transform[20][21] (developed by Didier Le Gall and Ali J. Tabatabai in 1988)[22] for its lossless compression algorithm.[19] JPEG 2000 technology, which includes the Motion JPEG 2000 extension, was selected as the video coding standard for digital cinema in 2004.[23]

Huffman Coding

Huffman coding is a fundamental technique used in image compression algorithms to achieve efficient data representation. Named after its inventor David A. Huffman, this method is widely employed in various image compression standards such as JPEG and PNG.

Principle of Huffman Coding

Huffman coding is a form of entropy encoding that assigns variable-length codes to input symbols based on their frequencies of occurrence. The basic principle is to assign shorter codes to more frequently occurring symbols and longer codes to less frequent symbols, thereby reducing the average code length compared to fixed-length codes.

Application in Image Compression

In image compression, Huffman coding is typically applied after other transformations like Discrete Cosine Transform (DCT) in the case of JPEG compression. After transforming the image data into a frequency domain representation, Huffman coding is used to encode the transformed coefficients efficiently.

Steps in Huffman Coding for Image Compression

  1. Frequency Analysis: Calculate the frequency of occurrence of each symbol or symbol combination in the transformed image data.
  2. Constructing the Huffman Tree: Build a Huffman tree based on the symbol frequencies. The tree is constructed recursively by combining the nodes with the lowest frequencies until a single root node is formed.
  3. Assigning Codewords: Traverse the Huffman tree to assign variable-length codewords to each symbol, with shorter codewords assigned to more frequent symbols.
  4. Encoding: Replace the original symbols in the image data with their corresponding Huffman codewords to generate the compressed data stream.

Benefits of Huffman Coding in Image Compression

  • Lossless Compression: Huffman coding can be used in both lossy and lossless image compression techniques, providing flexibility in balancing between compression ratio and image quality.
  • Efficiency: By assigning shorter codes to frequently occurring symbols, Huffman coding reduces the average code length, resulting in efficient data representation and reduced storage requirements.
  • Compatibility: Huffman coding is widely supported and can be seamlessly integrated into existing image compression standards and algorithms.

Conclusion

Huffman coding plays a crucial role in image compression by efficiently encoding image data into a compact representation. Its ability to adaptively assign variable-length codewords based on symbol frequencies makes it an essential component in modern image compression techniques, contributing to the reduction of storage space and transmission bandwidth while maintaining image quality.

Notes and references

  1. ^ "Image Data Compression".
  2. ^ Ahmed, N.; Natarajan, T.; Rao, K.R. (1974). "Discrete Cosine Transform" (PDF). IEEE Transactions on Computers: 90–93. doi:10.1109/T-C.1974.223784. S2CID 149806273. Archived from the original (PDF) on 2011-11-25.
  3. ^ Gilad David Maayan (Nov 24, 2021). "AI-Based Image Compression: The State of the Art". Towards Data Science. Retrieved 6 April 2023.
  4. ^ Bühlmann, Matthias (2022-09-28). "Stable Diffusion Based Image Compression". Medium. Retrieved 2022-11-02.
  5. ^ "High-Fidelity Generative Image Compression". Retrieved 6 April 2023.
  6. ^ Burt, P.; Adelson, E. (1 April 1983). "The Laplacian Pyramid as a Compact Image Code". IEEE Transactions on Communications. 31 (4): 532–540. CiteSeerX 10.1.1.54.299. doi:10.1109/TCOM.1983.1095851. S2CID 8018433.
  7. ^ Shao, Dan; Kropatsch, Walter G. (February 3–5, 2010). Špaček, Libor; Franc, Vojtěch (eds.). "Irregular Laplacian Graph Pyramid" (PDF). Computer Vision Winter Workshop 2010. Nové Hrady, Czech Republic: Czech Pattern Recognition Society. Archived (PDF) from the original on 2013-05-27.
  8. ^ Claude Elwood Shannon (1948). Alcatel-Lucent (ed.). "A Mathematical Theory of Communication" (PDF). Bell System Technical Journal. 27 (3–4): 379–423, 623–656. doi:10.1002/j.1538-7305.1948.tb01338.x. hdl:11858/00-001M-0000-002C-4314-2. Archived (PDF) from the original on 2011-05-24. Retrieved 2019-04-21.
  9. ^ David Albert Huffman (September 1952), "A method for the construction of minimum-redundancy codes" (PDF), Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, doi:10.1109/JRPROC.1952.273898, archived (PDF) from the original on 2005-10-08
  10. ^ Pratt, W.K.; Kane, J.; Andrews, H.C. (1969). "Hadamard transform image coding". Proceedings of the IEEE. 57: 58–68. doi:10.1109/PROC.1969.6869.
  11. ^ Ahmed, Nasir (January 1991). "How I Came Up With the Discrete Cosine Transform". Digital Signal Processing. 1 (1): 4–5. Bibcode:1991DSP.....1....4A. doi:10.1016/1051-2004(91)90086-Z.
  12. ^ "T.81 – DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS AND GUIDELINES" (PDF). CCITT. September 1992. Archived (PDF) from the original on 2000-08-18. Retrieved 12 July 2019.
  13. ^ "The JPEG image format explained". BT.com. BT Group. 31 May 2018. Retrieved 5 August 2019.
  14. ^ "What Is a JPEG? The Invisible Object You See Every Day". The Atlantic. 24 September 2013. Retrieved 13 September 2019.
  15. ^ Baraniuk, Chris (15 October 2015). "Copy protections could come to JPEGs". BBC News. BBC. Retrieved 13 September 2019.
  16. ^ "The GIF Controversy: A Software Developer's Perspective". 27 January 1995. Retrieved 26 May 2015.
  17. ^ L. Peter Deutsch (May 1996). DEFLATE Compressed Data Format Specification version 1.3. IETF. p. 1. sec. Abstract. doi:10.17487/RFC1951. RFC 1951. Retrieved 2014-04-23.
  18. ^ Taubman, David; Marcellin, Michael (2012). JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice. Springer Science & Business Media. ISBN 9781461507994.
  19. ^ a b Unser, M.; Blu, T. (2003). "Mathematical properties of the JPEG2000 wavelet filters" (PDF). IEEE Transactions on Image Processing. 12 (9): 1080–1090. Bibcode:2003ITIP...12.1080U. doi:10.1109/TIP.2003.812329. PMID 18237979. S2CID 2765169. Archived from the original (PDF) on 2019-10-13.
  20. ^ Sullivan, Gary (8–12 December 2003). "General characteristics and design considerations for temporal subband video coding". ITU-T. Video Coding Experts Group. Retrieved 13 September 2019.
  21. ^ Bovik, Alan C. (2009). The Essential Guide to Video Processing. Academic Press. p. 355. ISBN 9780080922508.
  22. ^ Le Gall, Didier; Tabatabai, Ali J. (1988). "Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques". ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing. pp. 761–764 vol.2. doi:10.1109/ICASSP.1988.196696. S2CID 109186495.
  23. ^ Swartz, Charles S. (2005). Understanding Digital Cinema: A Professional Handbook. Taylor & Francis. p. 147. ISBN 9780240806174.

Read other articles:

Gerald Vanenburg Informasi pribadiNama lengkap Gerald VanenburgTanggal lahir 5 Maret 1964 (umur 60)Tempat lahir Utrecht, BelandaPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)1980-1986 Ajax 1986-1993 PSV Eindhoven 1993-1996 Júbilo Iwata 1997 Utrecht 1997-1998 Cannes 1998-2000 1860 München Tim nasional1982-1992 Belanda 42 (1) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Gerald Vanenburg (lahir 5 Maret 1964) adalah pemain sepak bola asal Belanda. Statisti...

 

 

Katedral NancyKatedral Kabar Sukacita Santa Perawan Maria dan Santo SigebertPrancis: Cathédrale Notre-Dame-de-l'Annonciation de Nancycode: fr is deprecated Katedral NancyLokasiNancyNegara PrancisDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Nancy Katedral Nancy (Prancis: Cathédrale Notre-Dame-de-l'Annonciation et Saint-Sigisbertcode: fr is deprecated ; Katedral Bunda Maria Kabar Sukacita dan St. Sigisbert) adalah sebuah gereja...

 

 

AtlanteNama lengkapAtlante Fútbol Club, S.A. de C.V.JulukanLos Potros de HierroBerdiri1916StadionAndrés Quintana Roo,Cancún, Quintana Roo(Kapasitas: 20.000)PemilikAlejandro BurilloKetuaMiguel Ángel CouchonalManajerRubén IsraelLigaLiga MXApertura 201214th Kostum kandang Kostum tandang Kostum ketiga Club de Fútbol Atlante, juga dikenal sebagai Atlante, adalah klub sepak bola Meksiko yang kini bermain di liga Primera División de México. Basis klub ini terletak di kota Cancún, Meksiko da...

Diagram ini menunjukkan orbit satelit iregular Saturnus. Di tengah, orbit Titan, sebuah satelit yang regular, ditandai dengan warna merah sebagai perbandingan. Bestla (satelit) adalah satelit alami dari planet Saturnus. Saturnus memiliki 62 satelit, dengan 53 di antaranya telah dinamai dan hanya 13 di antaranya memiliki diameter lebih besar dari 50 kilometer. Referensi http://solarsystem.nasa.gov/planets/profile.cfm?Display=Sats&Object=Saturn Diarsipkan 2014-04-16 di Wayback Machine.

 

 

NO.1Album studio karya BoADirilis12 April 2002Direkam2002GenrePopDurasi?LabelSM EntertainmentProduserLee Soo ManKronologi BoA Listen To My Heart(2001)Listen To My Heart2001 NO.1(2002) Peace B. Remixes(2002)Peace B. Remixes2002 NO. 1 adalah album studio bahasa Korea ke 2 dan dengan penjualan terbesar BoA. Album NO. 1 versi bahasa Jepang termasuk bonus lagu eksklusif, NO.1 (versi bahasa Inggris). Album ini adalah album dengan penjualan terbaik keempat tahun 2002. Lagu Lagu promosional dicet...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

JalapeñoHalapenyo yang belum matangSpesiesCapsicum annuumKultivarJalapeñoTanah asalMeksikoTingkat kepedasan SedangSkala Scoville3,500 to 8,000 SHU Jalapeño atau halapenyo (Capsicum annuum) (pengucapan bahasa Spanyol: [xalaˈpeɲo]) merupakan cabai yang berasal dari Meksiko. Cabai ini memiliki rasa pedas yang kuat menggigit. Karena itu biasanya dijual dalam bentuk acar dalam kemasan botol kaca. Cabai jenis ini memiliki tingkat kepedasan 2.500 - 8.000 Skala Scoville. Nama Jalapeño ini diamb...

 

 

Indonesian traditional cake KlappertaartKlappertaart or coconut custardTypePastry, cake, kueCourseSnack, dessertPlace of originIndonesiaRegion or stateNorth SulawesiCreated byMinahasan  Media: Klappertaart Klappertaart is a Dutch-influenced Indonesian cake originating from Manado, North Sulawesi. Klappertaart is Dutch for coconut cake or coconut tart and it is made from flour, sugar, milk, butter, and the flesh and juice of coconuts.[1] See also Food portalIndonesia portal Br...

 

 

  提示:此条目页的主题不是沙巴民族统一机构。   提示:此条目页的主题不是卡达山杜顺人统一机构 (1961)。 此條目可参照英語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签�...

International sports event for deaf people Deaflympics Games Comité International des Sports des SourdsDeaflympics LogoMottoPER LUDOS AEQUALITAS (Equality through sport)First event1924; 100 years ago (1924) in Paris, France – 1924 Summer Deaflympics[1]Occur every4 yearsLast event2024 in Erzurum, Turkey – 2024 Winter Deaflympics (Winter)Next event2025 Summer Deaflympics, Tokyo, JapanPurposeProvision of opportunities for deaf persons to participate in elite sports...

 

 

Ernest BrowneBrowne (before 1903)Full nameErnest de Sylly Hamilton BrowneCountry (sports) IrelandBorn11 July 1855Great Malvern, EnglandDied13 April 1946(1946-04-13) (aged 90)Cheltenham, EnglandSinglesCareer record124–30 (80.5%)[1]Career titles25[2]Grand Slam singles resultsWimbledonSF (1885) Wikimedia Commons has media related to Ernest Browne. Ernest de Sylly Hamilton Browne (11 July 1855 – 13 April 1946;[3] also E. de S. H. Browne) ...

 

 

Pour les articles homonymes, voir Racah. Giulio RacahGiulio RacahBiographieNaissance 9 février 1909FlorenceDécès 28 août 1965 (à 56 ans)FlorenceSépulture Mont des RépitsNationalités israélienneitalienneFormation Université de FlorenceActivités Mathématicien, physicien, professeur d'universitéParentèle Ugo Fano (cousin germain)Autres informationsA travaillé pour Université de PiseUniversité hébraïque de JérusalemMembre de Académie israélienne des sciences et le...

1915 Allied offensive, World War I See also: Battle of Aubers, Battle of Festubert, and Second Battle of Ypres Second Battle of ArtoisPart of The Western Front of the First World WarWestern Front, Artois: Arras sector, January 1915Date9 May – 18 June 1915LocationArtois, France50°30′N 2°45′E / 50.500°N 2.750°E / 50.500; 2.750Result See Aftermath sectionTerritorialchanges French regain 6 sq mi (16 km2); British advance 1.9 mi (3.1 km) a...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)   لمعانٍ أخرى، طالع بشار (توضيح). بشار  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة...

 

 

بيت النبلاء (بالروسية: Дворянское гнездо)‏    المؤلف إيفان تورغينيف  اللغة الروسية  تاريخ النشر 1859  النوع الأدبي خيال سياسي،  وخيال رومانسي  [لغات أخرى]‏  رودين    تعديل مصدري - تعديل   بيت النبلاء (بالروسية: Дворянское гнездо) هي رواية بقلم ا�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2023) مهند الفلوجي  الفلوجي عام 2013    معلومات شخصية الميلاد سنة 1952 (العمر 71–72 سنة)  بغداد  الإقامة لندن  مواطنة العراق المملكة المتحدة  عضو في كلي...

 

 

Saint-Étienne trolleybus systemAn Irisbus Cristalis trolleybus in St Etienne in 2009OperationLocaleSaint-Étienne, Rhône-Alpes, FranceOpen1 January 1942 (1942-01-01)StatusOpenRoutes2Operator(s)Société de Transports de l'Agglomération Stéphanoise (STAS)Websitehttps://www.reseau-stas.fr/ STAS (in French) A Berliet ER100 trolleybus in St-Étienne in 1981. The Saint-Étienne trolleybus system (French: Réseau de trolleybus de Saint-Étienne) forms part of the public transport...

 

 

Eighth President of Lebanon In this Lebanese name, the father's name is Pierre and the family name is Gemayel. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Amine Gemayel – news · newspapers · books&#...

Sebuah orkes kecil musisi Tiongkok zaman Dinasti Qing. Alat musik tradisional Tiongkok mengacu kepada semua jenis alat musik yang digunakan dalam musik Tiongkok. Alat musik tradisional Tiongkok secara sederhana dapat digolongkan sebagai berikut: Alat musik gesek Erhu (二胡)- Rebab Tiongkok, badannya menggunakan kulit ular sebagai membran, menggunakan 2 senar, yang digesek dengan penggesek terbuat dari ekor kuda. Gaohu (高胡)- Sejenis dengan Erhu, hanya dengan nada lebih tinggi. Ge...

 

 

У этого топонима есть и другие значения, см. Монфокон. КоммунаМонфоконMonfaucon Герб 43°27′10″ с. ш. 0°07′01″ в. д.HGЯO Страна  Франция Регион Юг — Пиренеи Департамент Верхние Пиренеи Кантон Рабастенс-де-Бигор Мэр Ролан Дюбертран(2014—2020) История и география Площадь 10,38 ...