The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term Fourier analysis often refers to the study of both operations.
The decomposition process itself is called a Fourier transformation. Its output, the Fourier transform, is often given a more specific name, which depends on the domain and other properties of the function being transformed. Moreover, the original concept of Fourier analysis has been extended over time to apply to more and more abstract and general situations, and the general field is often known as harmonic analysis. Each transform used for analysis (see list of Fourier-related transforms) has a corresponding inverse transform that can be used for synthesis.
To use Fourier analysis, data must be equally spaced. Different approaches have been developed for analyzing unequally spaced data, notably the least-squares spectral analysis (LSSA) methods that use a least squares fit of sinusoids to data samples, similar to Fourier analysis.[2][3] Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in long gapped records; LSSA mitigates such problems.[4]
By the convolution theorem, Fourier transforms turn the complicated convolution operation into simple multiplication, which means that they provide an efficient way to compute convolution-based operations such as signal filtering, polynomial multiplication, and multiplying large numbers.[7]
The discrete version of the Fourier transform (see below) can be evaluated quickly on computers using fast Fourier transform (FFT) algorithms.[8]
In forensics, laboratory infrared spectrophotometers use Fourier transform analysis for measuring the wavelengths of light at which a material will absorb in the infrared spectrum. The FT method is used to decode the measured signals and record the wavelength data. And by using a computer, these Fourier calculations are rapidly carried out, so that in a matter of seconds, a computer-operated FT-IR instrument can produce an infrared absorption pattern comparable to that of a prism instrument.[9]
Fourier transformation is also useful as a compact representation of a signal. For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision, and weak components are eliminated, so that the remaining components can be stored very compactly. In image reconstruction, each image square is reassembled from the preserved approximate Fourier-transformed components, which are then inverse-transformed to produce an approximation of the original image.
When a function is a function of time and represents a physical signal, the transform has a standard interpretation as the frequency spectrum of the signal. The magnitude of the resulting complex-valued function at frequency represents the amplitude of a frequency component whose initial phase is given by the angle of (polar coordinates).
Fourier transforms are not limited to functions of time, and temporal frequencies. They can equally be applied to analyze spatial frequencies, and indeed for nearly any function domain. This justifies their use in such diverse branches as image processing, heat conduction, and automatic control.
When processing signals, such as audio, radio waves, light waves, seismic waves, and even images, Fourier analysis can isolate narrowband components of a compound waveform, concentrating them for easier detection or removal. A large family of signal processing techniques consist of Fourier-transforming a signal, manipulating the Fourier-transformed data in a simple way, and reversing the transformation.[10]
Most often, the unqualified term Fourier transform refers to the transform of functions of a continuous real argument, and it produces a continuous function of frequency, known as a frequency distribution. One function is transformed into another, and the operation is reversible. When the domain of the input (initial) function is time (), and the domain of the output (final) function is ordinary frequency, the transform of function at frequency is given by the complex number:
Evaluating this quantity for all values of produces the frequency-domain function. Then can be represented as a recombination of complex exponentials of all possible frequencies:
which is the inverse transform formula. The complex number, conveys both amplitude and phase of frequency
The Fourier transform of a periodic function, with period becomes a Dirac comb function, modulated by a sequence of complex coefficients:
(where is the integral over any interval of length ).
The inverse transform, known as Fourier series, is a representation of in terms of a summation of a potentially infinite number of harmonically related sinusoids or complex exponential functions, each with an amplitude and phase specified by one of the coefficients:
Note that any whose transform has the same discrete sample values can be used in the periodic summation. A sufficient condition for recovering (and therefore ) from just these samples (i.e. from the Fourier series) is that the non-zero portion of be confined to a known interval of duration which is the frequency domain dual of the Nyquist–Shannon sampling theorem.
See Fourier series for more information, including the historical development.
The DTFT is the mathematical dual of the time-domain Fourier series. Thus, a convergent periodic summation in the frequency domain can be represented by a Fourier series, whose coefficients are samples of a related continuous time function:
which is known as the DTFT. Thus the DTFT of the sequence is also the Fourier transform of the modulated Dirac comb function.[B]
The Fourier series coefficients (and inverse transform), are defined by:
Parameter corresponds to the sampling interval, and this Fourier series can now be recognized as a form of the Poisson summation formula. Thus we have the important result that when a discrete data sequence, is proportional to samples of an underlying continuous function, one can observe a periodic summation of the continuous Fourier transform, Note that any with the same discrete sample values produces the same DTFT. But under certain idealized conditions one can theoretically recover and exactly. A sufficient condition for perfect recovery is that the non-zero portion of be confined to a known frequency interval of width When that interval is the applicable reconstruction formula is the Whittaker–Shannon interpolation formula. This is a cornerstone in the foundation of digital signal processing.
Another reason to be interested in is that it often provides insight into the amount of aliasing caused by the sampling process.
Applications of the DTFT are not limited to sampled functions. See Discrete-time Fourier transform for more information on this and other topics, including:
Similar to a Fourier series, the DTFT of a periodic sequence, with period , becomes a Dirac comb function, modulated by a sequence of complex coefficients (see DTFT § Periodic data):
(where is the sum over any sequence of length )
The sequence is customarily known as the DFT of one cycle of It is also -periodic, so it is never necessary to compute more than coefficients. The inverse transform, also known as a discrete Fourier series, is given by:
the coefficients are samples of at discrete intervals of :
Conversely, when one wants to compute an arbitrary number of discrete samples of one cycle of a continuous DTFT, it can be done by computing the relatively simple DFT of as defined above. In most cases, is chosen equal to the length of the non-zero portion of Increasing known as zero-padding or interpolation, results in more closely spaced samples of one cycle of Decreasing causes overlap (adding) in the time-domain (analogous to aliasing), which corresponds to decimation in the frequency domain. (see Discrete-time Fourier transform § L=N×I) In most cases of practical interest, the sequence represents a longer sequence that was truncated by the application of a finite-length window function or FIR filter array.
The DFT can be computed using a fast Fourier transform (FFT) algorithm, which makes it a practical and important transformation on computers.
For periodic functions, both the Fourier transform and the DTFT comprise only a discrete set of frequency components (Fourier series), and the transforms diverge at those frequencies. One common practice (not discussed above) is to handle that divergence via Dirac delta and Dirac comb functions. But the same spectral information can be discerned from just one cycle of the periodic function, since all the other cycles are identical. Similarly, finite-duration functions can be represented as a Fourier series, with no actual loss of information except that the periodicity of the inverse transform is a mere artifact.
It is common in practice for the duration of s(•) to be limited to the period, P or N. But these formulas do not require that condition.
transforms (continuous-time)
Continuous frequency
Discrete frequencies
Transform
Inverse
transforms (discrete-time)
Continuous frequency
Discrete frequencies
Transform
Inverse
Symmetry properties
When the real and imaginary parts of a complex function are decomposed into their even and odd parts, there are four components, denoted below by the subscripts RE, RO, IE, and IO. And there is a one-to-one mapping between the four components of a complex time function and the four components of its complex frequency transform:[11]
From this, various relationships are apparent, for example:
The transform of a real-valued function is the conjugate symmetric function Conversely, a conjugate symmetric transform implies a real-valued time-domain.
The transform of an imaginary-valued function is the conjugate antisymmetric function and the converse is true.
The transform of a conjugate symmetric function is the real-valued function and the converse is true.
The transform of a conjugate antisymmetric function is the imaginary-valued function and the converse is true.
In modern times, variants of the discrete Fourier transform were used by Alexis Clairaut in 1754 to compute an orbit,[16]
which has been described as the first formula for the DFT,[17]
and in 1759 by Joseph Louis Lagrange, in computing the coefficients of a trigonometric series for a vibrating string.[17] Technically, Clairaut's work was a cosine-only series (a form of discrete cosine transform), while Lagrange's work was a sine-only series (a form of discrete sine transform); a true cosine+sine DFT was used by Gauss in 1805 for trigonometric interpolation of asteroid orbits.[18]
Euler and Lagrange both discretized the vibrating string problem, using what would today be called samples.[17]
An early modern development toward Fourier analysis was the 1770 paper Réflexions sur la résolution algébrique des équations by Lagrange, which in the method of Lagrange resolvents used a complex Fourier decomposition to study the solution of a cubic:[19]
Lagrange transformed the roots into the resolvents:
where ζ is a cubic root of unity, which is the DFT of order 3.
Historians are divided as to how much to credit Lagrange and others for the development of Fourier theory:Daniel Bernoulli and Leonhard Euler had introduced trigonometric representations of functions, and Lagrange had given the Fourier series solution to the wave equation, so Fourier's contribution was mainly the bold claim that an arbitrary function could be represented by a Fourier series.[17]
The first fast Fourier transform (FFT) algorithm for the DFT was discovered around 1805 by Carl Friedrich Gauss when interpolating measurements of the orbit of the asteroids Juno and Pallas, although that particular FFT algorithm is more often attributed to its modern rediscoverers Cooley and Tukey.[18][16]
In signal processing terms, a function (of time) is a representation of a signal with perfect time resolution, but no frequency information, while the Fourier transform has perfect frequency resolution, but no time information.
Fourier transforms on arbitrary locally compact abelian topological groups
The Fourier variants can also be generalized to Fourier transforms on arbitrary locally compactAbeliantopological groups, which are studied in harmonic analysis; there, the Fourier transform takes functions on a group to functions on the dual group. This treatment also allows a general formulation of the convolution theorem, which relates Fourier transforms and convolutions. See also the Pontryagin duality for the generalized underpinnings of the Fourier transform.
More specific, Fourier analysis can be done on cosets,[21] even discrete cosets.
Consequently, a common practice is to model "sampling" as a multiplication by the Dirac comb function, which of course is only "possible" in a purely mathematical sense.
^ ab
Heideman, M.T.; Johnson, D. H.; Burrus, C. S. (1984). "Gauss and the history of the fast Fourier transform". IEEE ASSP Magazine. 1 (4): 14–21. doi:10.1109/MASSP.1984.1162257. S2CID10032502.
Keluarga Lauw-Sim-ZechaKelompok etnisTionghoa Peranakan, Indo, BohemiaRegion saat iniJakarta, Bekasi, Depok, dan SukabumiPendiriLauw HoAnggotaLauw Tek Lok, Letnan CinaSim Keng Koen, Kapitan CinaLouisa ZechaAdrian Lauw ZechaChe Engku Chesterina (née Lauw-Sim-Zecha)EstatCimanggis Keluarga Lauw-Sim-Zecha adalah sebuah keluarga keturunan campuran Tionghoa Peranakan dan Indo-Bohemia yang mulai terkenal pada awal abad ke-19 sebagai pachters, tuan tanah, dan mandarin di Batavia (kini Jakarta) dan S...
BMW M70PembuatBMWProduksi1988–1996PendahuluTidak adaPenerusBMW M73Konfigurasi60° V12 BMW M70 adalah mesin piston V12 SOHC yang merupakan mesin produksi V12 pertama BMW yang diproduksi tahun 1988 sampai 1996.[1] Desain M70 diturunkan dari 2 mesin 6 segaris M20 yang digabung dengan sudut 60 derajat.[2] Mesin ini memiliki diameter dan langkah yang sama dengan,[3] M70 juga memiliki 2 Motronic ECU.[4] Model Mesin Silinder Tenaga Torsi Garis merah Tahun M70B50 4.9...
Astronaut Fullerton Suited for Training Exercises on KC-135. Boeing KC-135 Stratotanker adalah pesawat militer pengisian bahan bakar udara. Boeing KC-135 Stratotanker ini dan pesawat Boeing 707 dikembangkan dari prototipe Boeing 367-80. KC-135 adalah pesawat pengisian bahan bakar tanker pertama bertenaga jet Angkatan Udara AS dan menggantikan Stratotanker KC-97 . Stratotanker awalnya ditugaskan untuk mengisi bahan bakar pembom strategis, tetapi digunakan secara luas dalam Perang Vietnam dan ...
بطولة العالم لسباقات فورمولا 1 موسم 1954الفائزخوان مانويل فانجيوالشرکةمازيراتي & مرسيدس بنزالتسلسل الزمنيالموسم السابقالموسم التاليعنت بطولة العالم لسباقات فورمولا 1 موسم 1954 عقدت في سنة 1954 م، وفاز بها خوان مانويل فانجيو (بالإنجليزية: Juan Manuel Fangio) من فريق مازيراتي & مرس�...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Angkatan Laut Uni Soviet – berita · surat kabar · buku · cendekiawan · JSTOR (November 2018)Angkatan Laut Uni SovietВоенно-морской флот СССР Voyenno-morskoy flot SSSRBendera dari Angkatan...
Jaksa Agung Muda Bidang Pengawasan Kejaksaan Agung Republik IndonesiaGambaran umumDasar hukumPeraturan Presiden Nomor 38 Tahun 2010Susunan organisasiJaksa Agung Muda PengawasanAmir Yanto[1]Kantor pusatJl. Sultan Hasanuddin No.1 Kebayoran Baru Jakarta Selatan - IndonesiaSitus webwww.kejaksaan.go.id Jaksa Agung Muda Bidang Pengawasan disingkat (Jamwas) merupakan unsur pembantu pimpinan dalam melaksanakan tugas dan wewenang Kejaksaan di bidang pengawasan, bertanggung jawab kepada Ja...
Sudan Airwaysالخطوط الجوية السودانية IATA ICAO Kode panggil SD SUD SUDANAIR Didirikan1947PenghubungBandar Udara Internasional KhartoumArmada16 plus 5 on orderTujuan28Perusahaan indukSudanese Airline AuthorityKantor pusatKhartoum, SudanTokoh utama(CEO)Situs webwww.sudanair.com Sudan Airways (Bahasa Arab;الخطوط الجوية السوداني) adalah nama maskapai penerbangan nasional Sudan. Sudan Airways mempunyai kode IATA SD dan kode ICAO SUD. Pangkalan utamanya adal...
Disambiguazione – Se stai cercando altri significati, vedi Sergio (disambigua). Sergio è un nome proprio di persona italiano maschile[1][2][3][4]. Indice 1 Varianti 1.1 Varianti in altre lingue 2 Origine e diffusione 3 Onomastico 4 Persone 4.1 Variante Serge 4.2 Variante Sergej 4.3 Variante Serhij 4.4 Altre varianti 5 Il nome nelle arti 6 Note 7 Bibliografia 8 Voci correlate 9 Altri progetti Varianti Maschili Alterati: Sergino[4] Femminili: Sergia...
Hindu temple in Siem Reap, Cambodia Prasat Suor PratFour towers of Prasat Suor PratReligionAffiliationHinduismDistrictAngkor ThomProvinceSiem ReapLocationLocationAngkorCountryCambodiaLocation in CambodiaGeographic coordinates13°26′49″N 103°51′37″E / 13.44694°N 103.86028°E / 13.44694; 103.86028ArchitectureCreatorJayavarman VIICompletedlate 12th centuryTemple(s)12 towers Prasat Suor Prat (Khmer: ប្រាសាទសួព្រ័ត) is a series of twelv...
1242 - MCCXLII(1995 A.U.C.)782 år sedan År1239 | 1240 | 124112421243 | 1244 | 1245 Årtionde1220-talet | 1230-talet 1240-talet1250-talet | 1260-talet Århundrade1100-talet 1200-talet1300-talet Årtusende1000-talet Året Födda | AvlidnaBildanden | Upplösningar 1242 (MCCXLII) var ett normalår som började en onsdag i den Julianska kalendern. Händelser 5 april – Slaget på sjön Peipus utkämpas mellan Tyska orden och Republik...
ليلة عيد الميلاد اليوم السنوي 24 ديسمبر تعديل مصدري - تعديل عشية الميلاد[1][2] أو عشية عيد الميلاد[3] أو ليلة عيد الميلاد تصادف يوم 24 ديسمبر لدى الطوائف المسيحية الغربية، وفي 6 يناير لدى الطوائف المسيحية الشرقية، وهي الليلة قبل عيد الميلاد، الاحتفال بعي�...
Head of state and government of El Salvador President of the Republic of El SalvadorPresidente de El SalvadorPresidential sealIncumbentNayib Bukelesince 1 June 2019Executive branch of the Government of El SalvadorTypeHead of stateHead of governmentResidenceCasa PresidencialTerm length5 years, renewable once consecutivelyConstituting instrumentConstitution of El SalvadorFormation22 February 1841First holderJuan José GuzmánSuccessionLine of successionDeputyVice President of El SalvadorSa...
Area of land where little precipitation occurs Not to be confused with dessert. This article is about dry terrain. For arid climate, see desert climate. For the act of abandoning or withdrawing support, see desertion. For other uses, see Desert (disambiguation). Sand and dunes of the Libyan Desert Valle de la Luna (Moon Valley) in the Atacama Desert of Chile, the world's driest non-polar desert A desert is a landscape where little precipitation occurs and, consequently, living conditions crea...
Indian politician (1939–2022) Mulayam Singh YadavMulayam Singh in 200621st Minister of DefenceIn office1 June 1996 – 19 March 1998Prime MinisterH. D. Deve GowdaI. K. GujralPreceded byPramod MahajanSucceeded byGeorge Fernandes15th Chief Minister of Uttar PradeshIn office29 August 2003 – 13 May 2007Preceded byMayawatiSucceeded byMayawatiIn office5 December 1993 – 3 June 1995Preceded byPresident's ruleSucceeded byMayawatiIn office5 December 1989 – 24...
For the village of the same name, see Ziduri. Romanian writer and politician (1802–1872) Ion Heliade RădulescuPortrait of Rădulescu, by Mișu PoppBorn(1802-01-06)January 6, 1802Târgoviște, WallachiaDiedApril 27, 1872(1872-04-27) (aged 70)Bucharest, RomaniaPen nameIon Heliade, EliadOccupationpoet, essayist, journalist, translator, historian, philosopherNationalityWallachian, RomanianPeriod1828–1870GenreLyric poetry, epic poetry, autobiography, satireSubjectLinguistics, Romanian h...
Untuk perusahaan induknya, lihat AirAsia Indonesia. Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Indonesia AirAsialogo Indonesia AirAsia 2020 IATA ICAO Kode panggil QZ AWQ Wagon Air Didirikan1999; 25 tahun lalu (1999)Mulai beroperasi1 Desember 2005; 18 tahun lalu (2005-12-01)Pusat operasi Jakarta Soekarno–Hatta Denpasar Medan Surabaya Lombok Program p...
Artikel ini bukan mengenai Teritip angsa. Angsa teritip Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Anseriformes Famili: Anatidae Subfamili: Anserinae Tribus: Anserini Genus: Branta Spesies: B. leucopsis Nama binomial Branta leucopsis(Bechstein, 1803) Angsa teritip (Branta leucopsis) termasuk dalam genus Branta dari angsa hitam, yang mana meliputi spesies-spesies dengan bulu dan corak dominan hitam, m...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) فيليب بلاي معلومات شخصية الميلاد أبريل 1960 (64 سنة) مواطنة فرنسا الحياة العملية المدرسة الأم معهد باريس للموسيقىجامعة نيس صوفيا أنتيبوليس المهنة...