Non-uniform discrete Fourier transform

In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing,[1] magnetic resonance imaging,[2] and the numerical solution of partial differential equations.[3]

As a generalized approach for nonuniform sampling, the NUDFT allows one to obtain frequency domain information of a finite length signal at any frequency. One of the reasons to adopt the NUDFT is that many signals have their energy distributed nonuniformly in the frequency domain. Therefore, a nonuniform sampling scheme could be more convenient and useful in many digital signal processing applications. For example, the NUDFT provides a variable spectral resolution controlled by the user.

Definition

The nonuniform discrete Fourier transform transforms a sequence of complex numbers into another sequence of complex numbers defined by

(1)

where are sample points and are frequencies. Note that if and , then equation (1) reduces to the discrete Fourier transform. There are three types of NUDFTs.[4] Note that these types are not universal and different authors will refer to different types by different numbers.

  • The nonuniform discrete Fourier transform of type I (NUDFT-I) uses uniform sample points but nonuniform (i.e. non-integer) frequencies . This corresponds to evaluating a generalized Fourier series at equispaced points. It is also known as NDFT[5] or forward NDFT [6][7]
  • The nonuniform discrete Fourier transform of type II (NUDFT-II) uses uniform (i.e. integer) frequencies but nonuniform sample points . This corresponds to evaluating a Fourier series at nonequispaced points. It is also known as adjoint NDFT.[7][6]
  • The nonuniform discrete Fourier transform of type III (NUDFT-III) uses both nonuniform sample points and nonuniform frequencies . This corresponds to evaluating a generalized Fourier series at nonequispaced points. It is also known as NNDFT.

A similar set of NUDFTs can be defined by substituting for in equation (1). Unlike in the uniform case, however, this substitution is unrelated to the inverse Fourier transform. The inversion of the NUDFT is a separate problem, discussed below.

Multidimensional NUDFT

The multidimensional NUDFT converts a -dimensional array of complex numbers into another -dimensional array of complex numbers defined by

where are sample points, are frequencies, and and are -dimensional vectors of indices from 0 to . The multidimensional NUDFTs of types I, II, and III are defined analogously to the 1D case.[4]

Relationship to Z-transform

The NUDFT-I can be expressed as a Z-transform.[8] The NUDFT-I of a sequence of length is

where is the Z-transform of , and are arbitrarily distinct points in the z-plane. Note that the NUDFT reduces to the DFT when the sampling points are located on the unit circle at equally spaced angles.

Expressing the above as a matrix, we get

where

Direct inversion of the NUDFT-I

As we can see, the NUDFT-I is characterized by and hence the points. If we further factorize , we can see that is nonsingular provided the points are distinct. If is nonsingular, we can get a unique inverse NUDFT-I as follows:

.

Given , we can use Gaussian elimination to solve for . However, the complexity of this method is . To solve this problem more efficiently, we first determine directly by polynomial interpolation:

.

Then are the coefficients of the above interpolating polynomial.

Expressing as the Lagrange polynomial of order , we get

where are the fundamental polynomials:

.

Expressing by the Newton interpolation method, we get

where is the divided difference of the th order of with respect to :

The disadvantage of the Lagrange representation is that any additional point included will increase the order of the interpolating polynomial, leading to the need to recompute all the fundamental polynomials. However, any additional point included in the Newton representation only requires the addition of one more term.

We can use a lower triangular system to solve :

where

By the above equation, can be computed within operations. In this way Newton interpolation is more efficient than Lagrange Interpolation unless the latter is modified by

.

Nonuniform fast Fourier transform

While a naive application of equation (1) results in an algorithm for computing the NUDFT, algorithms based on the fast Fourier transform (FFT) do exist. Such algorithms are referred to as NUFFTs or NFFTs and have been developed based on oversampling and interpolation,[9][10][11][12] min-max interpolation,[2] and low-rank approximation.[13] In general, NUFFTs leverage the FFT by converting the nonuniform problem into a uniform problem (or a sequence of uniform problems) to which the FFT can be applied.[4] Software libraries for performing NUFFTs are available in 1D, 2D, and 3D.[7][6][14][15][16][17]

Applications

The applications of the NUDFT include:

See also

References

  1. ^ Bagchi, Sonali; Mitra, Sanjit K. (1999). The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing. Boston, MA: Springer US. ISBN 978-1-4615-4925-3.
  2. ^ a b Fessler, J.A.; Sutton, B.P. (February 2003). "Nonuniform fast fourier transforms using min-max interpolation". IEEE Transactions on Signal Processing. 51 (2): 560–574. Bibcode:2003ITSP...51..560F. doi:10.1109/TSP.2002.807005. hdl:2027.42/85840.
  3. ^ Lee, June-Yub; Greengard, Leslie (June 2005). "The type 3 nonuniform FFT and its applications". Journal of Computational Physics. 206 (1): 1–5. Bibcode:2005JCoPh.206....1L. doi:10.1016/j.jcp.2004.12.004.
  4. ^ a b c Greengard, Leslie; Lee, June-Yub (January 2004). "Accelerating the Nonuniform Fast Fourier Transform". SIAM Review. 46 (3): 443–454. Bibcode:2004SIAMR..46..443G. CiteSeerX 10.1.1.227.3679. doi:10.1137/S003614450343200X.
  5. ^ Plonka, Gerlind; Potts, Daniel; Steidl, Gabriele; Tasche, Manfred (2019). Numerical Fourier Analysis. Birkhäuser. doi:10.1007/978-3-030-04306-3. ISBN 978-3-030-04306-3.
  6. ^ a b c PyNUFFT Services. "Basic use of PyNUFFT — PyNUFFT 2023.2.2 documentation". pynufft.readthedocs.io. Retrieved 27 February 2024.
  7. ^ a b c The Simons Foundation. "Mathematical definitions of transforms — finufft 2.2.0 documentation". finufft.readthedocs.io. Retrieved 27 February 2024.
  8. ^ Marvasti, Farokh (2001). Nonuniform Sampling: Theory and Practice. New York: Springer. pp. 325–360. ISBN 978-1-4615-1229-5.
  9. ^ Dutt, Alok (May 1993). Fast Fourier Transforms for Nonequispaced Data (PDF) (PhD). Yale University.
  10. ^ Dutt, Alok; Rokhlin, Vladimir (November 1993). "Fast Fourier Transforms for Nonequispaced Data". SIAM Journal on Scientific Computing. 14 (6): 1368–1393. Bibcode:1993SJSC...14.1368D. doi:10.1137/0914081.
  11. ^ Potts, Daniel; Steidl, Gabriele (January 2003). "Fast Summation at Nonequispaced Knots by NFFT". SIAM Journal on Scientific Computing. 24 (6): 2013–2037. Bibcode:2003SJSC...24.2013P. doi:10.1137/S1064827502400984.
  12. ^ Boyd, John P (December 1992). "A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid" (PDF). Journal of Computational Physics. 103 (2): 243–257. Bibcode:1992JCoPh.103..243B. doi:10.1016/0021-9991(92)90399-J. hdl:2027.42/29694.
  13. ^ Ruiz-Antolín, Diego; Townsend, Alex (20 February 2018). "A Nonuniform Fast Fourier Transform Based on Low Rank Approximation" (PDF). SIAM Journal on Scientific Computing. 40 (1): A529–A547. arXiv:1701.04492. Bibcode:2018SJSC...40A.529R. doi:10.1137/17M1134822. hdl:10902/13767.
  14. ^ "NUFFT page". cims.nyu.edu.
  15. ^ "NFFT". www.nfft.org.
  16. ^ "MikaelSlevinsky/FastTransforms.jl". GitHub. 2019-02-13.
  17. ^ "chebfun/chebfun". GitHub. 2019-02-07.

Read other articles:

Apristurus ampliceps Apristurus ampliceps Status konservasiRisiko rendahIUCN42701 TaksonomiKerajaanAnimaliaFilumChordataKelasChondrichthyesOrdoCarcharhiniformesFamiliScyliorhinidaeGenusApristurusSpesiesApristurus ampliceps lbs Apristurus ampliceps adalah sebuah spesies hiu kucing dalam keluarga Scyliorhinidae yang ditemukan di dekat Australia dan Selandia Baru.[2][3] Habitat alaminya adalah laut terbuka.[2] Spesies tersebut pertama kali dideskripsikan pada tahun 2008 o...

 

 

Artikel atau sebagian dari artikel ini terkait dengan suatu acara olahraga yang akan datang.Informasi di halaman ini bisa berubah setiap saat (tidak jarang perubahan yang besar) seiring dengan mendekatnya masa pelaksanaan. Olimpiade XXXVTuan rumahBrisbane, Queensland, AustraliaPembukaan23 Juli 2032Penutupan8 Agustus 2032StadionStadion The GabbaMusim Panas ← Los Angeles 2028 2036 → Musim Dingin ← 2030 2034 → Olimpiade Musim Panas 2032 asecara resmi dikenal sebagai Games...

 

 

الخطوط الجوية العراقية   إياتاIA إيكاوIAW رمز النداءIRAQI تاريخ الإنشاء 1945 الجنسية العراق  المطارات الرئيسية مطار بغداد الدولي، مطار البصرة الدولي، مطار أربيل الدولي، مطار النجف الدولي ، مطار السليمانية الدولي ،مطار الناصرية الدولي أفرع أخرى ١٣٠ حجم الأسطول 32 + (45 طائرة �...

Seorang gadis Jepang di Kyoto, yang mengenakan yukata. Yukata (浴衣code: ja is deprecated , baju sesudah mandi) adalah jenis kimono yang dibuat dari bahan kain katun tipis tanpa pelapis. Dibuat dari kain yang mudah dilewati angin, yukata dipakai agar badan menjadi sejuk di sore hari atau sesudah mandi malam berendam dengan air panas. Menurut urutan tingkat formalitas, yukata adalah kimono nonformal yang dipakai pria dan wanita pada kesempatan santai di musim panas, misalnya sewaktu melihat ...

 

 

العلاقات الجنوب سودانية البيلاروسية جنوب السودان روسيا البيضاء   جنوب السودان   روسيا البيضاء تعديل مصدري - تعديل   العلاقات الجنوب سودانية البيلاروسية هي العلاقات الثنائية التي تجمع بين جنوب السودان وروسيا البيضاء.[1][2][3][4][5] مقارنة بين ا...

 

 

Pour les articles homonymes, voir Venaco (homonymie). Venaco Vue de Venaco depuis le col de Bella Granajo : Lugo-di-Venaco au premier plan,Serraggio au second. Héraldique Administration Pays France Collectivité territoriale unique Corse Arrondissement Corte Intercommunalité CC du Centre Corse Maire Mandat David Piferini 2022-2026 Code postal 20231 Code commune 2B341 Démographie Gentilé Venachesi Populationmunicipale 666 hab. (2021 ) Densité 12 hab./km2 Géographie Coordo...

Fakultas PsikologiUniversitas Gadjah MadaJenisPerguruan Tinggi Negeri Badan HukumDidirikan8 Januari 1965 DekanRahmat Hidayat, S.Psi., M.Sc., Ph.D.LokasiSleman, Daerah Istimewa Yogyakarta, IndonesiaAlamatFakultas PsikologiJl. Sosio Humaniora Bulaksumur, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa YogyakartaSitus webhttp://www.psikologi.ugm.ac.id/ Fakultas Psikologi Universitas Gadjah Mada adalah salah satu fakultas di Universitas Gadjah Mada yang didirikan pada tanggal 8 Januar...

 

 

Radio station in Sterling, IllinoisWSDRSterling, IllinoisBroadcast areaRock River ValleyFrequency1240 kHzProgrammingLanguage(s)EnglishFormatNews/Talk, Adult ContemporaryOwnershipOwnerFletcher M. Ford(Virden Broadcasting Corp.)Sister stationsWSSQ, WZZTHistoryFirst air date1949[1]Technical informationFacility ID37207ClassCPower500 watts (day)1,000 watts (night)Transmitter coordinates41°48′59″N 89°40′13″W / 41.81639°N 89.67028°W / 41.81639; -89.67028Tr...

 

 

Stasiun Kras D23 Tampak luar Stasiun Kras, 2020LokasiJalan Stasiun KrasPurwodadi, Kras, Kediri, Jawa Timur 64172IndonesiaKoordinat7°56′44″S 111°57′50″E / 7.94556°S 111.96389°E / -7.94556; 111.96389Koordinat: 7°56′44″S 111°57′50″E / 7.94556°S 111.96389°E / -7.94556; 111.96389Ketinggian+75 mOperator KAI Commuter Letakkm 170+979 lintas Bangil-Blitar-Kertosono[1] Jumlah peron2 (satu peron sisi yang rendah dan satu per...

Untuk kegunaan lain, lihat Barney dan Barney. Barney & FriendsLogo Barney & FriendsPembuatSheryl Leach[1]PemeranDavid Joyner (2001)Carey Stinson (2009)Josh Martin (2002; sut Barney)Bob West (2001)Duncan Brannan (2002)Tim Dever (2002)Dean Wendt (2009; suara Barney)Jenny Dempsey (1992)Jeff Ayers (2009; sut Baby Bop)Julie Johnson (suara Baby Bop)Jeff Brooks (2004)Kyle Nelson (2009; sut B.J.)Patty Wirtz (suara B.J.)Adam Brown (sut Riff)Michaela Dietz (suara Riff)Negara asalAmerika...

 

 

Voce principale: Società Sportiva Dilettantistica Pro Sesto. Associazione Calcio Pro SestoStagione 2000-2001Sport calcio Squadra Pro Sesto Allenatore Davide Aggio a seguire da 6ª Gianpaolo Rossi Presidente Giuseppe Peduzzi Serie C212º posto Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Terzi (31) Miglior marcatoreCampionato: Maiolo (12)Totale: Maiolo (14) StadioStadio Ernesto Breda 1999-2000 2001-2002 Si invita a seguire il modello di voce Questa pagina raccoglie le informazio...

 

 

Isogonal polytope with uniform facets This article may be confusing or unclear to readers. Please help clarify the article. There might be a discussion about this on the talk page. (September 2008) (Learn how and when to remove this message) Convex uniform polytopes 2D 3D Truncated triangle or uniform hexagon, with Coxeter diagram . Truncated octahedron, 4D 5D Truncated 16-cell, Truncated 5-orthoplex, In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope...

Hungarian engineer Leslie L. Vadász. Photograph by Steve Jurvetson Leslie L. Vadász (born Vadász László; born September 12, 1936, in Budapest, Hungary) is a Hungarian[1][2]-American engineer and manager, one of the founding members of Intel Corporation.[3] Early life and education Vadász was born in Budapest to Jewish parents.[4] In 1944, his family was incarcerated in the city's ghetto, where they miraculously survived.[4] In his hometown, Budape...

 

 

Tefnakht pada parasasti tahun ke-VIII-nya Shepsesre Tefnakht (dalam bahasa Yunani Kuno: Τνεφαχθός, translit. Tnephachthos) merupakan seorang pangeran Sais dan pendiri Dinasti kedua puluh empat Mesir yang relatif singkat; ia naik pangkat menjadi Pemimpin Ma di kota asalnya. Dia diperkirakan memerintah sekitar 732 SM hingga 725 SM, atau tujuh tahun. Tefnakht I pertama kali memulai kariernya sebagai Pemimpin Agung Barat dan Pangeran Sais dan merupakan tokoh sezaman penguasa ter...

 

 

American actor (1895–1956) Louis CalhernCalhern in 1946BornCarl Henry Vogt(1895-02-19)February 19, 1895Brooklyn, New York, U.S.DiedMay 12, 1956(1956-05-12) (aged 61)Nara, Nara, JapanResting placeHollywood Forever CemeteryOccupationActorYears active1921–1956Spouses Ilka Chase ​ ​(m. 1926; div. 1927)​ Julia Hoyt ​ ​(m. 1927; div. 1932)​ Natalie Schafer ​ ​(m....

رشة جريئةأحد ملصقات الفيلممعلومات عامةتاريخ الصدور 2001 مدة العرض 98 دقيقة اللغة الأصلية العربية البلد  مصر الطاقمالمخرج سعيد حامد البطولة  القائمة ... أشرف عبد الباقي ياسمين عبد العزيز لطفي لبيب علي حسنين محمد يوسف هالة فاخر سامي العدل شعبان عبد الرحيم تعديل - تعديل مصد�...

 

 

San Diego Film Critics Society Award for Best Supporting ActressCurrent recipient: Rachel McAdamsAwarded forBest Performance by an Actress in a Supporting RoleCountryUnited StatesPresented bySan Diego Film Critics SocietyFirst awarded1996Currently held byRachel McAdams Are You There God? It's Me, Margaret. (2023)Websitesdfcs.org The San Diego Film Critics Society Award for Best Supporting Actress is an award given by the San Diego Film Critics Society to honor supporting female acting achieve...

 

 

Australia Rugby League Parramatta Eels 2002 season 2002 Parramatta Eels seasonNRL Rank6thPlay-off resultQualifying Finalists (Lost 14–24 vs Brisbane Broncos, 2nd Qualifying Final)World Club ChallengeDNQ2002 recordWins: 10; draws: 2; losses: 12Points scoredFor: 531; against: 440Team informationCEODenis FitzgeraldCoach Brian SmithCaptain Nathan CaylessStadiumParramatta Stadium (Capacity: 20,741)Avg. attendance14,088 (Home)14,762 (Home & Away)19,115 (Finals Series)...

Античная философияПредфилософская традиция(VIII—VII вв. до н. э.) Акусилай Гомер Гесиод Лин Мусей Орфей Ферекид Эпименид Натурфилософия(VII—V вв. до н. э.) Милетская школа Фалес Анаксимандр Анаксимен Пифагорейцы Пифагор Алкмеон Кротонский Архит Тимей Локрский Филолай Элеаты...

 

 

Staumauer des Kraftwerks Ottenstein mit dem Krafthaus, in welchem zwei Pumpen mit je 9 MW Leistung und vier Turbinen mit je 12 MW Leistung untergebracht sind Das Koepchenwerk in Herdecke Pumpspeicherwerk Markersbach – Oberbecken Ein Pumpspeicherkraftwerk, auch Pumpspeicherwerk, abgekürzt PSW, ist ein Speicherkraftwerk, das elektrische Energie in Form von potentieller Energie (Lageenergie) in einem Stausee speichert. Das Wasser wird durch elektrische Pumpen in den Speicher gehoben...